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Abstract

Structural topology optimization problems have been traditionally set out in terms
of maximum stiffness formulations. In this approach, the goal is to distribute a
given amount of material in a certain region, so that the stiffness of the resulting
structure is maximized for a given load case. Even though this approach is quite
convenient, it also entails some serious conceptual and practical drawbacks.

The authors, in common with other research groups, have been working for a
few years on the possibility of stating these kinds of problems by means of a FEM-
based minimum weight with stress (and/or displacement) constraints formulation.
The physical meaning of this approach is closer to the engineering point of view.
Furthermore, most of the above mentioned drawbacks could be removed this way.
However, this also leads to more complicated optimization problems with much
higher computational requirements, since a large number of highly non-linear (lo-
cal) constraints must be taken into account to limit the maximum stress (and/or
displacement) at the element level. In this paper, we explore the feasibility of defin-
ing a so-called global constraint, whose basic aim is to limit the maximum stress
(and/or displacement) simultaneously within all the structure by means of one sin-
gle inequality. Should this global constraint perform adequately, the complexity of
the underlying mathematical programming problem should be drastically reduced.
Finally, we compare the results provided by both types of constraints in some ap-
plication examples.
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1 Introduction

Structural topology optimization problems have been traditionally set out in terms
of maximum stiffness (minimum compliance) formulations. In this approach, the
goal is to distribute a given amount of material in a certain region, so that the
stiffness of the resulting structure is maximized (the compliance, or energy of de-
formation, is minimized) for a given load case [1, 2]. Even though this approach
is quite convenient, it also entails some serious drawbacks, mainly: multiple load
cases can not be considered; self-weight is normally ignored; the result varies with
the amount of material to be distributed; and the final design could be unfeasible
in practice, since no constraints are imposed on stresses (and/or displacements).
Moreover, the maximum stiffness problem is essentially ill-posed. Thus, the so-
lution oscillates as the discretization refinement is increased, what gives raise to
mesh-dependent checkerboard layouts. This difficulty can be partially overcome
by introducing porous materials [1]. But, on a regular basis, a spread porous ma-
terial distribution is considered an unwanted result. Hence, additional penalization
and stabilization techniques and image filters must be employed to avoid numerical
instabilities and unrealistic -or simply useless- final solutions.

The authors, as other research groups, are working since a few years in the possi-
bility of stating this kind of problems by means of a FEM-based minimum weight
with stress (and/or displacement) constraints approach. Obviously, the physical
meaning of this approach is closer to the engineering point of view, while any kind
of constraint under multiple load cases could also be considered.

The basic and most intuitive procedure to preclude excessively high stresses
(and/or excessively large displacements) within all the structure consists in limit-
ing the maximum stress (and/or displacement) at a series of given points within
each element [3, 4]. This is commonly referred to as the “local (statement of) con-
straints approach”. Thus, one can easily state quite complete and realistic optimiza-
tion problems. The optimized solutions seem to be correct from the engineering
point of view and their appearance could be considered closer to the engineering
intuition than the results provided by the maximum stiffness approach. Further-
more, neither stabilization techniques nor image filters seem to be necessary to
preclude unwanted final results [4]. However, this also leads to more complicated
optimization problems with much higher computational requirements, since a large
number of highly non-linear (local) constraints must be taken into account to limit
the maximum stress (and/or displacement) at the element level.

In this paper, we explore the feasibility of defining a so-called global constraint,
which basic aim is to limit the maximum stress (and/or displacement) simulta-
neously within all the structure by means of one single inequality. This is com-
monly referred to as the “global (statement of) constraints approach”. Should this
global constraint perform adequately, the complexity of the underlying mathemat-
ical programming problem should be drastically reduced. The global constraint
formulation that we present hereafter is based on the Kreisselmeier–Steinhauser
function [5]. Finally, we compare the results obtained by means of both the local
and the global statement of constraints in some application examples.
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2 The optimization problem

In terms of a FEM-based minimum weight with stress (and/or displacement) con-
straints formulation, the topology optimization problem can be written as [4]

Find ρρρρρρρρρρρρρρ = {ρρρρρρρρρρρρρρe}, e = 1, . . . , Ne

that minimizes F (ρρρρρρρρρρρρρρ)

verifying gj(ρρρρρρρρρρρρρρ) ≤ 0, j = 1, . . . , m

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , Ne

(1)

where the design variable ρe is the relative density of element number e, what
is assumed constant within the element. Thus, if dΩ is the volume of a differen-
tial region within element number e, the volume occupied by the porous material
within the differential region will be ρedΩ. The lower limit for the relative density
(ρmin) is introduced to preclude the entire hollowing out of the elements (since the
concepts of displacement, strain and stress become meaningless and the stiffness
matrix could even be singular in such a case).

The objective function is defined as [4]

F (ρρρρρρρρρρρρρρ) =
Ne∑
e=1

(ρe)
1
p

∫
Ωe

γmat dΩ, (2)

where Ωe is the element number e, γmat is the density of the material (assumed
constant), and p ≥ 1 is a tuning parameter that can be adjusted to favor a mainly
compact distribution of material (since the intermediate values of the relative den-
sity are increasingly penalized as the value of p grows).

It seems quite obvious that any kind of constraint could be taken into account in
the above stated optimization problem. For the seek of simplicity, further discus-
sion and examples are restricted to considering stress constraints type

σ̂min ≤ σ̂
(
σσσσσσσσσσσσσσh

j (ρρρρρρρρρρρρρρ)
)

and/or σ̂
(
σσσσσσσσσσσσσσh

j (ρρρρρρρρρρρρρρ)
)
≤ σ̂max, (3)

where σσσσσσσσσσσσσσh
j (ρρρρρρρρρρρρρρ) are the FEM-computed components of the stress tensor at each given

point Pj for the actual values of the relative densities ρρρρρρρρρρρρρρ. The details on the FEM
formulation for the structural analysis problem with relative density can be found
in [4]. Finally, σ̂(σσσσσσσσσσσσσσ) is the reference stress expression that corresponds to the failure
criteria being used (which values are limited).

In the 2D examples presented in this paper we consider materials with equal
tensile and compressive strength limits. Thus, σ̂(σσσσσσσσσσσσσσ) is the Von Mises reference
stress expression and σ̂max is the elastic stress limit of the material [4]. Then the
constraints considered in (1) can be written as

gj(ρρρρρρρρρρρρρρ) = σ̂
(
σσσσσσσσσσσσσσh

j (ρρρρρρρρρρρρρρ)
)
− σ̂max ≤ 0. (4)
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2.1 Local statement of constraints

Without losing generality, let’s suppose that one stress constraint is imposed at one
given point per element. Then, the optimization problem takes the form

Find ρρρρρρρρρρρρρρ = {ρρρρρρρρρρρρρρe}, e = 1, . . . , Ne

that minimizes F (ρρρρρρρρρρρρρρ)

verifying ge(ρρρρρρρρρρρρρρ) ≤ 0, e = 1, . . . , Ne

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , Ne

(5)

This is commonly referred to as the “local (statement of) constraints approach”.
However, stress constraints type (4) can exhibit the so-called “singularity phe-

nomena”, that is due to the discontinuous nature of the stress when the relative
density tends to zero [6]. Briefly, reaching the optimum could call for removing all
the material within a certain element Ωe. However, the corresponding restriction
type (4) could be more severely violated as we get closer to the optimum (that is,
for decreasing values of ρe slightly greater than 0), since the stress could rise as the
material is being removed (until the element is completely hollowed out). Under
these conditions, the gradient of the constraint would be negative in the vicinity of
the optimum. Thus, any consistent non linear programming algorithm would try
to increase the relative density instead of reducing it, what precludes convergence
to the exact solution of the problem [4]. Singularity phenomena have also been
observed in some theoretical truss optimization problems [7] and in other fields
of structural optimization [3]. For this reason, statements type (4) are not fully
satisfactory and they must be rewritten some way. Following the ideas of several
authors [7, 3, 4] we propose the alternative statement for the local stress constraint

ge(ρρρρρρρρρρρρρρ) =
[
σ̂
(
σσσσσσσσσσσσσσh

e (ρρρρρρρρρρρρρρ)
)
− σ̂max ϕe

]
(ρe)q ≤ 0,

being ϕe = 1 − ε +
ε

ρe
.

(6)

When q = 0, limits are imposed on the stress. When q = 1, limits are imposed
on the so-called effective stress [4], what helps to remove some singularities. On
the other hand, the value of the “relaxation parameter” ε ∈ [0.001, 0.1] must be
reduced as we approach the optimum during the optimization process.

The solutions to problems type (5) with constraints type (6) seem to be correct
from the engineering point of view and their appearance could be considered closer
to the engineering intuition than the results provided by the maximum stiffness
approach [4]. Furthermore, neither stabilization techniques nor image filters seem
to be necessary to preclude unwanted final results. However, these optimization
problems are much more complicated and they have much higher computational
requirements than the ones emerging from the maximum stiffness approach, since
we have to deal now with a large number of highly non-linear constraints type (6).
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2.2 Global statement of constraints

We explore now the feasibility of limiting the stress simultaneously within all the
structure by means of one single inequality. Should this be possible, the optimiza-
tion problem should reduce to

Find ρρρρρρρρρρρρρρ = {ρρρρρρρρρρρρρρe}, e = 1, . . . , Ne

that minimizes F (ρρρρρρρρρρρρρρ)

verifying G(ρρρρρρρρρρρρρρ) ≤ 0,

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , Ne

(7)

This is commonly referred to as the “global (statement of) constraints approach”.
Obviously, if the so-called global constraint G(ρρρρρρρρρρρρρρ) performs adequately, the com-
plexity of the mathematical programming problem and the computational require-
ments (both the data storage and the computing time) should be drastically reduced
in comparison with (5).

Therefore, the essence is to define an adequate procedure for aggregating all
the local constraints in a single global one. The global constraint formulation that
we present hereafter is based on the Kreisselmeier–Steinhauser function, that is
mainly being used at present in aero-structural optimization [5]. Furthermore, we
have introduced some modifications that improve the numerical performance of
the resulting global constraint. The proposed global constraint takes the form

GKS(ρρρρρρρρρρρρρρ) =

[
1
µ

ln

(
Ne∑
e=1

e µ(σ̂∗
e − 1)

)
− 1

µ
ln(Ne)

]
≤ 0

being σ̂∗
e =

σ̂
(
σσσσσσσσσσσσσσh

e (ρρρρρρρρρρρρρρ)
)

σ̂max ϕe
.

(8)

The use of the normalized reference stress σ̂∗
e is intended to rescale the arguments

of the exponential terms. In addition, it helps to prevent a possible overflow con-
dition to occur.

On the other hand, µ is a tuning parameter that penalizes the failure to satisfy
the local constraints. In theory, global constraint (8) becomes equivalent to the
corresponding whole set of local constraints when µ tends to infinity. However,
when the value of µ is too large, global constraint (8) can become too difficult to
manage, both for practical and theoretical reasons. Thus, for increasing values of
µ (after a certain point) the expected accuracy of the sensitivity analysis decreases;
in addition, the non-linearity of the global constraint function is boosted; and over-
flow conditions are more likely to occur. Consequently, it becomes more difficult
to obtain a reasonably good numerical solution to problem (7). On the other hand,
global constraint (8) will not adequately represent the corresponding whole set of
local constraints if the value of µ is not large enough. In such a case, the solution to
problem (7) will not be satisfactory. Therefore, it is extremely important to assign
a correct value to the parameter µ.
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Figures 1 and 2 depict the value of the global constraint for different values
of the parameter µ in different conditions. In Figure 1, σ̂∗

e = 0.90 at 50% of
the elements. The curves compare the values of the global constraint for different
values of σ̂∗

e (assumed all equal) at the remaining elements. In Figure 2, σ̂∗
e =

0.90 at the elements in which the corresponding local constraint is satisfied, and
σ̂∗

e = 1.10 at the elements in which the corresponding local constraint is violated.
The curves compare the values of the global constraint for a growing percentage
of violated local constraints. On a regular basis, it seems reasonable to adjust the
value of µ between 20 and 30, or between 15 and 40 as much.

Figure 1: Global constraint versus µ for a growing value of the stress.

Figure 2: Global constraint versus µ for a growing % of violated local constraints.
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3 Optimization algorithms

In practice, the local approach leads to mathematical programming problems type
(5) with a large number of highly non-linear constraints type (6). An improved
SLP algorithm with quadratic line-search seems to be the right choice to solve
this kind of problems [8]. Thus, the linear approximation to problem (5) is stated
(with additional side constraints) and solved at each iteration by means of the Sim-
plex method [9]. The inactive constraints are disregarded, with the aim of saving
computational resources. Even though the obtained results are quite promising [4],
both the data storage and the computing time associated to stating and solving the
underlying linear programming problems grow very fast with the number of ele-
ments Ne. This fact severely restricts the applicability of the technique.

On the other hand, the global constraints approach leads to mathematical pro-
gramming problems type (7) with only one highly non-linear constraint type (8).
To solve this kind of problems we propose the modified inverse barrier function

φ(ρρρρρρρρρρρρρρ, r) = F (ρρρρρρρρρρρρρρ)
[
1 − r

1
GKS(ρρρρρρρρρρρρρρ)

]
. (9)

In comparison with the standard definition [10], the inverse of the global con-
straint in the above expression is multiplied times the objective function. We recall
that the expression of GKS(ρρρρρρρρρρρρρρ) type (8) is non-dimensional, unlike the expression
of F (ρρρρρρρρρρρρρρ) type (2). The rescaling introduced by this product improves the numeri-
cal conditioning of the problem, while possible dimension conflicts are prevented.
Furthermore, it helps to adequately calibrate the value of the so-called barrier pa-
rameter r. Then, the quasi-unconstrained non-linear programming problem

Find ρρρρρρρρρρρρρρ = {ρρρρρρρρρρρρρρe}, e = 1, . . . , Ne

that minimizes φ(ρρρρρρρρρρρρρρ, r),

verifying 0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , Ne

(10)

is solved by means of the Fletcher–Reeves conjugate gradient method [10], which
performance is improved by using a complementary quadratic line-search. On a
regular basis, both the data storage and the computing time associated to stating
and solving the underlying quasi-unconstrained non-linear programming problems
grow linearly with the number of elements Ne. This fact expands the applicability
of the technique far beyond the possibilities of the local approach.

Both approaches require the full first order sensitivity analysis at each itera-
tion. This is done by means of an analytical implementation of the adjoint state
method [11]. In this way we avoid storing a large amount of intermediate results
while the computing effort devoted to solving linear systems is minimized. Both
approaches also require one additional second order directional sensitivity analy-
sis at each iteration. This is done by means of an analytical implementation of the
direct differentiation method [11], since data storing and computing time are not
critical issues at this point. The computational cost of the sensitivity analysis is
indeed expected to be much lower (or even negligible) in the global approach.
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4 Numerical examples

Actually, the examples presented below are two-dimensional. The solutions are
represented as 3D solids in order to facilitate the understanding of the results,
being the false thickness proportional to the relative density at each point.

The first example corresponds to an arch-type structure with fixed supports. Fig-
ure 3 shows the dimensions of the domain and the position of the external load.
Self-weight is also considered. The rectangular domain (1 m thick) containing
the structure is discretized in 76 × 38 = 2888 eight-node quadrilateral elements.
The concentrated load is distributed within three contiguous elements. The ma-
terial being used is steel with density γmat = 7650 kg/m3, Young’s modulus
E = 2.1 105 MPa, Poisson’s ratio ν = 0.3 and elastic limit σ̂max = 230 MPa.

Figures 4 and 5 compare the solutions obtained by means of the local (p = 10,
ε = 0.01, q = 1) and of the global approach (p = 10, ε = 0.01, µ = 20).

Figure 3: Example 1. Domain definition and external loads.

Figure 4: Example 1. Distribution of material at the final solution. (Local approach
(left) vs. global approach (right).)

The second example corresponds to a classic MBB-type beam with sliding sup-
ports. Only half of the structure is analyzed, because of symmetry. Figure 6 shows
the dimensions of the domain and the position of the external load. Self-weight
is also considered. The rectangular domain (1 m thick) containing the structure
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Figure 5: Example 1. Normalized reference stress (σ̂∗
e ) at the final solution. (Local

approach (left) vs. global approach (right).)

is discretized in 60 × 20 = 1200 eight-node quadrilateral elements. The material
being used is the same as in the former example.

Figures 7 and 8 compare the solutions obtained by means of the local (p = 4,
ε = 0.02, q = 1) and of the global approach (p = 4, ε = 0.02, µ = 20).

Figure 6: Example 2. Domain definition and external loads.

Figure 7: Example 2. Distribution of material at the final solution. (Local approach
(left) vs. global approach (right).)

Figure 8: Example 2. Normalized reference stress (σ̂∗
e ) at the final solution. (Local

approach (left) vs. global approach (right).)
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5 Conclusions

In this paper, we have proposed specific procedures for correctly stating local con-
straints (local approach) and for constraint aggregation (global approach) in struc-
tural topology optimization problems. We have also compared the performance of
both types of constraints (global vs. local) in some application examples. The com-
putational requirements (both the data storage and the computing time) have been
an order of magnitude lower in the case of the global approach, as it was expected.
In return, the results have not been exactly equivalent, but quite similar.

The impressive reduction in the computational cost due to the constraint aggre-
gation clearly compensates for the slight loss of accuracy in the results. Moreover,
the applicability of the technique is expanded far beyond its original possibilities.
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