
Numerical experiences with parallel clusters 
for generating Pareto surfaces: application in 
structural topology optimization  

S. Wuppalapati1, A. D. Belegundu2,  A. Aziz3 & V. Agarwala3 

1Xerox Corporation, USA  
2Department of Mechanical Engineering,  
The Pennsylvania State University, USA 
3High Performance Computing and Visualization Group,  
The Pennsylvania State University, USA 

Abstract 

Generating Pareto surfaces is a well-accepted technique in multi-attribute 
decision making. For computationally intensive applications like finite element 
based optimization, it can become very expensive to generate the complete 
Pareto surface. Hence, using parallel computer clusters in these scenarios 
becomes very attractive. Pareto surfaces are generated using two different 
clusters with a structural topology problem as a test problem and the 
performance gains realized are analyzed. Near linear speed-ups and high 
efficiencies are observed on both the clusters. It is possible to integrate this 
methodology into commercial software applications, leading to less turn around 
times to make critical decisions in various applications. 
Keywords:  topology optimization, multi-attribute optimization, finite elements, 
Pareto surfaces, parallel clusters, MPI, speed-up.  

1 Introduction  

Multi-attribute or multi-criteria optimization typically involves the problem of 
‘simultaneously’ minimizing (or maximizing) different objectives within a given 
domain. Mathematically it involves solving the optimization problem: 

1 2 3min             [ ( ), ( ), ( ), , ( )]
subject to   

mf f f f
∈Ω

x x x x
x

…
   (1) 

Computer Aided Optimum Design in Engineering X  3

 © 2007 WIT PressWIT Transactions on The Built Environment, Vol 91,
 www.witpress.com, ISSN 1743-3509 (on-line) 
doi:10.2495/OP070011



Table 1:  Nomenclature used. 

Symbol Description 
if  Objective function 

x  Design variable vector 
Ω  Design space 

i∆  Displacement at a node 
ρ  Density of the material used 
xi ith element of the design variable vector x 
NDV Number of design variables. 
NDC Number of displacement constraints 
E Young’s Modulus 
υ   Poisson’s ratio 
w Weight of the structure at a given design 

variable. 
w0 Maximum weight of the structure. 
np Number of Processors. 
Tnp Time taken to solve the problem on np 

number of processors. 
Snp Speed-up when np number of processors 

are used. 
Enp Efficiency when np number of processors 

are used. 
FE Finite element 

 
 
     Though a utility function can be defined and optimized, leading to a single 
best compromise among the competing objectives, generation of the entire 
Pareto surface is equally attractive among decision makers. Both these 
methodologies of solving multi-attribute optimization problems are detailed by 
Belegundu and Chandrupatla [1]. Pareto surfaces, apart from not being sensitive 
to weights used in the utility function, allow visualization and give a feel for the 
entire design space. Pareto surfaces can be generated using various methods like 
weighted approach, constraint approach, genetic algorithms etc. Irrespective of 
the method adopted, generation of these surfaces usually is computationally 
expensive, involving a high number of function evaluations and a need to solve 
the optimization problem repeatedly. Moreover, when computationally 
expensive function evaluations like finite element (FE) analysis are involved in 
the multi-attribute optimization, it can become prohibitively expensive to 
generate the entire Pareto surface on a single computer. 
     In this paper, a constraint approach [1] is adopted to generate the complete 
Pareto surface using computer clusters with an application in topology 
optimization of structural systems. In this approach, eqn. (1) is reformulated as  
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     The entire Pareto surface can be generated by solving eqn. (2) repeatedly for 
different values of cj. Since each of the optimization problems solving eqn. (2) is 
independent of the others, it is possible to solve each instance of it 
simultaneously on different computing nodes of a computer cluster. This 
approach is implemented in this paper to generate Pareto surfaces on two 
different computer clusters, LION-XO and LION-XM, available with the High 
Performance Computing Group, The Pennsylvania State University [2].  
Numerical experiences gained using these two clusters are presented and 
analyzed here. By using adequately large number of computing nodes in a cluster 
it would be possible to reduce the time taken to generate the entire Pareto surface 
to a time comparable to that of a single optimization run. This will lead to near 
real-time decision making involving trade-off analysis.  

2 Pareto surfaces in structural topology optimization 

2.1 Structural topology optimization 

Structural topology optimization in its most general form refers to the problem of 
describing optimal material distribution within a given domain for a specific 
objective function subject to various constraints. It is a common practice in 
literature to obtain optimal material distribution using a stiffness based approach, 
[3–5], where the stiffest structure for a given constraint on mass fraction is 
solved for. However, a structural engineer would ideally like to maximize 
stiffness and also minimize weight without having to restrict to a given mass-
fraction. This would lead to a multi-attribute optimization problem with weight 
and stiffness as the two competing objectives. To solve this optimization 
problem completely and aid the engineer in a better decision making process, the 
entire Pareto curve (as there are only two competing objectives here) has to be 
obtained.  
     In this paper, to obtain the Pareto curve a minimum weight based formulation 
for topology optimization as follows is used: 
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     In this formulation, stiffness is implicitly incorporated into the optimization 
problem by constraining deflection at the points where load is applied, i∆ , to be 
less than a limit, maxi∆ . By varying the value of maxi∆  and solving the 
optimization problem repeatedly on a computer cluster, the entire Pareto curve 
could be obtained. A plot of the displacement limit maxi∆ and optimum weight 
w gives the Pareto curve. 
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     It should be noted that though the problem is posed as a continuum model 
with the density of material at a given point, ρ , being allowed to take any value 
between 0 and 1, it is desired that ρ  be either close to the limits, 0 and 1, at the 
optimum. This will aid in a clear description of the topology of the final 
structure.  
     The topology optimization problem is solved using widely popular micro-
structure approach [3], where the entire domain is divided into various finite 
elements. Each element (or a group of elements) is characterized by a design 
variable, xi, the density of the material. Hence the objective function and 
constraints are continuous functions of the design variable, x. Since intermediate 
densities appear in the formulation in eqn. (3), it becomes necessary to determine 
various elastic properties, E(x), G12(x), etc. as functions of intermediate 
densities. This procedure, known as parameterization of material properties, is 
carried out using a novel procedure called Virtual Testing Methodology 
proposed by Belegundu et al [6]. Though not taken advantage of here, this 
methodology allows parameterization of not just elastic properties but also 
strength properties of intermediate densities [6]. The actual problem formulation 
employed in the solution of topology optimization is as follows:  

wmin            ( * ( ))w
subject to         1, ,
                 | | max       1, ,
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     The term )(xp is added as a penalty function to the objective function so that 
the densities at the optimum are driven to the limits xli and xui giving a clear 
material distribution. The objective function is normalized with respect to 
maximum weight wmax. The penalty function used, strategies used with the 
penalty function etc. are described in detail by Wuppalapati [7]. The optimizer 
used to solve eqn (4) employs Method of Feasible Directions (MFD) algorithm 
[8], a gradient based optimization algorithm. Entire Pareto surface can be 
obtained by changing the value of  max i∆ in steps between two limits and 
solving eqn (4) repeatedly.  

2.2 Test problem chosen  

To obtain Pareto curves in topology optimization the L-Bracket shown in fig. 1 
is chosen. Material properties used for the analysis are E=200 e9 and υ =0.3. A 
load of 9.0e6N is applied as shown in fig. 1. To obtain the Pareto curve, 
maximum allowable distance at the point where load is applied, max∆ , is varied 
from a value of 1.55e–03m to 5.0e–03m in equal steps. The structure is 
discretized using 1250 4-noded QUAD elements. The density of each element is 
used as a design variable (without any grouping) and hence the optimization 
problem has 1250 design variables. The optimization problem is solved at each 
value of max∆ on each computing node of the cluster obtain the Pareto Curve. 
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3 Solution methodology on computer cluster 

A master-slave paradigm is employed here to solve the problem on a computer 
cluster [9]. In this methodology, the optimization algorithm is started 
simultaneously on all compute nodes used in the cluster. One of the computing 
nodes is chosen as a master node (here the node with rank 0) [9]. The master 
node handles all I/O interactions needed for the execution of the FE based 
optimization like input data, optima calculated on all compute nodes etc. It 
broadcasts all data needed for successful execution of the optimization algorithm 
to the other computing nodes and also synchronizes their execution. The master 
node apart from controlling the computation on the slave nodes, also computes 
optima for certain values of  max i∆ . 

 

8m 

10m 

3m 

 5m

 
Figure 1: Test problem used for topology optimization: L-bracket. 

     To obtain the entire Pareto curve, the number of points required on the Pareto 
curve is fixed. The interval between which imax∆ is to be varied is divided in to 
equal steps and each optimization is carried out on different computing nodes. If 
the number of points needed is more than the number of compute nodes used, the 
same procedure is carried out in a loop till the optimization is carried out at all 
the values of imax∆ and the complete Pareto curve is obtained. It should be 
noted that the time of execution of the optimization algorithm is not equal at all 
values of imax∆ and hence different compute nodes may finish a particular 
instance of the algorithm at different times. Hence synchronization of the 
execution is needed. This is carried out at the master node. 
     By varying the number of points required on the Pareto curve, it is possible to 
obtain a relatively fine Pareto curve. By using a larger number of points, the 
computational resources of a massive cluster can be used to obtain a fine Pareto 
curve in a far less time.  

4 Cluster description 

The two clusters used in this study are LION-XO and LION-XM cluster [2]. 
LION-XO is a heterogeneous cluster with one login node and 132 compute 
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nodes. Of the 132 nodes, 80 compute nodes are dual 2.4GHz AMD Opteron 
Processors with 8 GB of ECC RAM connected through a Force 10 E600 Series 
Gigabit Ethernet switch and a high speed Silverstorm Infiniband Network. Only 
these 80 nodes of the cluster are used to select the compute nodes for the 
optimization. LION-XM is a homogeneous cluster with 1 login node and 168 
compute nodes with dual 3.2GHz Intel Xeon Processors with 4GB of ECC RAM 
connected through a high speed Myrinet Network.  
     The parallel implementation of the code is carried out using MPI-2.0 [9] 
standard in Fortran 90. Intel FORTRAN 90 compilers are used for compiling the 
codes. MPIGM, a version of Argonne National Laboratory’s MPICH available 
on the clusters is used for the tests [9]. It should be noted from the description of 
solution methodology that communication between master and nodes is 
relatively minimal and hence near linear speed-ups are to be expected. Also the 
speed of interconnects between different processors and the nature of 
communication between different nodes is to have very little effect on the 
performance of the algorithm. 

5 Results and conclusions 

For the test problem described in Section II, test runs were carried out on both 
the clusters LION-XO and LION-XM. The number of points on the Pareto curve 
needed is fixed at 24 and runs were carried with different number of compute 
nodes starting from 1 through 12, using one processor per node. Hence the 
number of processors used in the computation, np, is equal to the number of 
compute nodes used. The total wall-clock time to completely solve the problem 
is measured in each run. It should be noted here that, for consistency of 
comparison, in this implementation the number of processors on which the test is 
run is set to be a multiple of the total number of points needed on the Pareto 
Curve. If it were not the case, a different strategy would have to be implemented 
in the algorithm which takes advantage that not all instances of the optimization 
algorithm take same amount of time to reach the optimum. 
     As expected the Pareto optimal curve obtained is the same using different 
number of processors and on both the clusters. It is shown in fig. 2. 
Representative optimal topologies of the structure in fig 1 at different imax∆ are 
shown in fig. 3. As imax∆ is increased, there is a possibility for material to be 
removed at the optimum, thus making the identifiable members of the optimum 
topology thinner and thinner. Appearance of grey-areas and checker-boarding 
patterns are common issues in topology optimization [3, 7]. 
     The wall-clock time expended to obtain the entire Pareto Curve using 
different number of processors on both clusters is given in table 2. It can be 
observed that the problem is solved considerably faster on LION-XO, which has 
less processing speed but far more RAM availability than on LION-XM. FE 
based optimization is a data intensive application requiring the storage of huge 
matrices both in FE-analysis and in optimization. Though the actual run-time for  
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any application is dependent on various factors, it can be said that computer 
clusters with high-end RAM capability can potentially be more efficient for this 
kind of application. 
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Figure 2: Pareto curve for the test problem in Figure 1. 

Figure 3: Change in topology of the structure as imax∆ is changed.  

     Speed-ups achieved using both the clusters are plotted in fig. 4. It is observed 
that though actual time taken to obtain the entire Pareto curve is different in the 
two clusters, very similar speed-ups are realized on both of them. Hence the 
speed-ups obtained for this application are practically independent of the 
hardware components like the interconnects and the switches used to build the 
cluster, the processing speed, RAM availability etc.  This is to be expected 
because there is very minimal communication between processors while the 
optimization problem is being solved. 
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Table 2:  Wall-clock time on the clusters.  

# Procs        Time Taken(s) 
  LION-XM LION-XO 

1 177517 104793 
2 96423 55868 
3 65056 38101 
4 51569 29539 
6 37182 21322 
8 30218 17174 

12 21380 12417 
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Figure 4: Efficiency of the computer cluster observed.  

     Linear-speeds up are not observed because, though the computation of 
obtaining the Pareto Curve is distributed among various clusters, the time taken 
to solve each optimization problem is not equal. As a result, some processors 
remain idle till the problem is completely solved on all the other processors. 
However, the time taken to obtain the entire Pareto Curve decreases from 
177517s when one processor is used to 21380s when 12 processors are used, a 
reduction by a factor of 8.3. This means that it is possible to take more informed 
decisions at a considerably faster rate than is possible using just one processor. 
Also, the test problem used here has 1250 design variables. In various FE based 
optimizations of practical importance, the number of design variables can be 
considerably larger, sometimes running in to the order of tens of thousands of 
design variables. In such a scenario, the speed-up observed obtains even more 
importance in terms of turn around times to take a decision.  
     Even though tests were carried out on homogeneous computing nodes on 
each cluster, it is not necessary that the actual performance of the cluster be 
homogenous. To determine the homogeneous nature of the cluster, time taken to 
solve a particular instance of the optimization problem in Eq. 4 and the number 
of function evaluations (NFV) for that particular instance are calculated. From  
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these, time taken for the computation of one function evaluation is calculated on 
all processors. The time taken for each function evaluation is normalized with 
respect to the first processor and the results are plotted in fig. 6. 
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Figure 5: Speed-up realized solving for Pareto surfaces of the L-bracket.   
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Figure 6: Normalized performance of different processors.  

     It can be seen that the performance of each computing node in the 
optimization, normalized with respect to one of the processor remains close to 1. 
Hence each processor of the cluster shows a near ideal performance in this 
application.  This study would be very important in synchronizing the algorithm, 
more so on a heterogeneous cluster where processing speeds of different 
compute nodes are different. While submitting the jobs to computing nodes, 
taking care of the heterogeneous nature of the cluster can lead to better speed-ups 
and more efficient use of the computing resources available.  
     From the studies presented here, it can be concluded that using computer 
clusters for generating Pareto surfaces in computationally intensive applications 
like structural topology optimization is very attractive. Near linear speed-ups and 
high efficiencies obtained make it easier to make critical decisions faster. Also, 
maximum use of computational resources available is possible because of 
relatively low communication costs between different processors. 
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