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ABSTRACT

The paper is devoted to the online identification of the nonlinear model of surface vessel dynamics. The
mathematical formulation of the maritime ships is complicated due to the existence of nonlinear
hydrodynamic forces and moments that are associated with vessel dynamics. For this reason, the
coefficients of the model are not known, nor do they require clarification. The identification algorithm
is based on the method of the dynamic regressor extension and mixing (DREM). On the first step using
parameterisation, the regression model is obtained, where regressor and regressand depend on
measurable signals: linear velocities in surge, the linear velocity in sway, the angular velocity in yaw
and the rudder angle. At the second step, the new regression model is obtained using linear stable filters
and delays. DREM allows replacing the regression model of the nth order with n first order regression
models and estimate parameters separately. Finally, parameters are estimated by the standard gradient
descent method. The efficiency of the proposed approach is demonstrated through a set of
numerical simulations.
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1 INTRODUCTION
The mathematical model of the maritime ship is complicated due to the nonlinear nature of
hydrodynamic forces and moments that are associated with vessel dynamics, structural and
parametric uncertainty, the presence of external disturbances. Moreover, some parameters
are changing over time, for example, which are related to the loading of the vessel.

This is the reason why the system identification methods are playing an important role in
the modelling of ship maneuvering motion. Usually, they base on free-running model tests
or full-scale trials.

Various methods are used to identify the hydrodynamic coefficients of the surface vessel
mathematical model: model reference method (Hayes [1]), extended Kalman filter method
(Abkowitz [2], Herrero and Gonzalez [3]), recursive prediction error method ( Zhou and
Blanke [4]), least square method (Rhee et al. [5]), frequency domain identification method
(Perez and Fossen [6]), neural network (Wang et al. [7]), etc.

In this paper, we propose an online identification algorithm based on dynamic extension
and mixing and standard gradient descent methods. It allows estimating all parameters
separately and provides global convergence of the estimation error to zero in the absence
of noise.

2 MOTIVATION
2.1 Mathematical model

Consider the 3 DOF horizontal plane models for manoeuvring, which are based on the
rigid-body kinetics:

MgpV + Crg(V)v = 125(v, 6), (1
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where v =[u v r]7 is the generalized velocity, where u is the linear velocity in surge, v
is the linear velocity in sway, r is the angular velocity in yaw, é is the rudder angel; Mg is
the rigid-body inertia matrix, Czg(v) is a matrix of rigid-body Coriolis and centripetal forces
and tzp is a vector of the external forces and moments. A similar mathematical model of the
vessel is considered in Sotnikova and Veremey [8], where the problem of dynamic
positioning is solved.

Expanding the hydrodynamic forces and moments by 3rd-order truncated Taylor
expansions about the steady state condition u = u,, according to Abkowitz [2], the eqn (1)

can be represented as:
0 m-—Y, mx; — Yz (v) = (y>, )
0 mx, — Y, I,—N; 7 N

g

where m is the mass of the ship, I, is the moment of inertia about the vertical axes, x4 is the
longitudinal coordinate of the ship’s center of gravity, X and Y are the longitudinal and lateral
hydrodynamic force components, N is the hydrodynamic yaw moment.

Replacing the hydrodynamic forces and moments in eqn (2) with 3rd-order truncated
Taylor expansions, the functions X = X(u,v,r,6), Y =Y(u,v,r,8) and N = N(u,v,1,8)
can be rewritten as :

X = Xuu+ Xpu? + Xp'® + Xpp2 + X2 + Xptv + X5562 +

3
+Xu55u52 + XU5U6 + Xu,,(guv& ( )

Y= Yu+Yr+Y,,v3+ Y, v%r+Y,vu+ Yyru+ Yss + Yess63 +

4
+Y,5ud + Yy 5u?S8 + V55082 + Y5028 + (Yy + Yo u + Yo, u?), “)

N = N,v+ N.7 + Ny, v® + Ny v?r + Nyyvu + Npyru + N6 +
+N55563 + Nu5U6 + Nuu5u26 + Nv55U62 + va5v25 + (5)
+(Ngy + Noyut + Ny u?).

The constant matrix Mgzp is invertible, therefore eqn (2) can be rewritten in the
explicit form:

1‘1 = (m - Xu)_lx, (6)
V= m [(I, — N;)Y — (mx, — Y;)N], %
7= detzlw,%B [—(mxg —Y;)Y + (m = Y,)N]|, (®)

where detM3; = (m — Y;)(I, — N;) — (mx, — Yf)z. In (6)—(8) we assume that all
parameters of the model are unknown. The main objective is to construct estimates 8; for
unknown parameters vectors 6; of the described ship model, such that the norm of the
estimation error converges to zero:

lim,_,.||6;®)]| = 0,

where ||-|| is the Euclidean norm, 8;(t) = 6; — 6;(t), i = 1,3.
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3 IDENTIFICATION
3.1 Linear regression model

Let us rewrite the surface vessel dynamic model eqns (6)—(8) in a linear regression form:

y=9¢"0, )
where y = (V1 Y2 ¥3)T is the regressand, ¢ = ((pij), i =1,n, j =123 is the regressor,
0=, 6, .. 6,)7 is the unknown parameters vector, n is the count of unknown

parameters of the regression model.
The vector 8 of the unknown parameters has the following form:

6,
9 = <92> )
63

40Xx1
6,= ——86
1= m—Xg X (10)
I;—N mxg—Y;

0, = z Ny ) 2]
2 detM3g ¥ detMig NV’

mxg—Y; m-Y.
6,= ——L7"9¢ >0
3 detMZp ¥ ' detMiz N’

where vectors 8y, 8y and 8y are unknown hydrodynamic parameters from eqns (3)—(5):
Ox = Xu Xuu Xuuwu Xow X Xpw Xss
Xu&S XvS Xuv&)T'
Op= Y Y Yoo Yur Yoo Yoo Y5 o
Y&S& Yu6 Yuqu Yv&? va& YO YOu YOuu)T,
Oy = Ny Ny Ny Ny Ny Ny Ns
NS&S' Nu6 Nuu8 Nv88 vaS NO NOu NOuu)T-

From eqns (6)—(8) we can find the regressor matrix ¢ and the regressand y:
Px 050x1  O10x1
¢ = Oi5¢1 @y 055%1 ) (11)
015x1 O15x1 @w 40x3
ox= W u? u¥ v* r* rv 8% us?® vs wwsd),

oy=9oy= W r v® v wvu ru 6§
83 us u?s vs? v 1 u udT,

o
y= <v> : (12)
7/ 3x1

Notice, that the functions u(t), v(t), r(t) and §(t) are measurable signals, but the
derivations u(t), v(t), 7(t) are unknown. This can be handled by special filtering. Let us
consider the linear stable operator H(-), for instance, a simple exponentially stable LTI
(Linear time-invariant) filter of the form:

a

Hi(p) = — (13)

p+a’
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where a > 0 is the adjustable parameter, p = % is the differential operator.

Applying operators Hg(-) to the equation (9) yields:

yr(t) = @f (D)6,

u(t)
y®) = [HO]® =y =25 v© ], (14)
()

o) = [He(@)](®) === ().

p+a

Now, the components of the regressor matrix ¢y and the regressand y; are
measurable signals.

Note that the matrices ¢ and ¢y have a block-diagonal form. Therefore, the regression
model (eqn (14)) can be divided into three independent regression models for estimating the
parameters 6,, 8, and 65 respectively:

yri(t) = @fi(t)6, (15)

where i = 1,3.
3.2 Dynamic regressor extension and mixing procedure

The DREM procedure generates 40 new, one-dimensional, independent regression models.
Consider the estimation method for 8; (from the first equation of the system (eqn (15)).
Parameters 6, and 65 are estimating similarly.

Let us introduce delay operators [Hd].(-)](t) = ()(t — d;), where d; > 0 is the delay

value. Applying delay operators to the first regressor equation (15) gives:
ya,(t) = ‘Pg]- ()6,
Yo, = [Ha,0r0)]| ®) =y (t - a, (16)
0a,() = [Ha, (0] (®) = ox(t — d)).

Using different delays d;, j = 1,dimf; we can construct the extended system
of equations:
Y() = ()6,
YO = 0a® Yo, - Ya,o(®)ox1,

®a, ()
17
() = ﬁ@@w . "
¢A®/
10x10
Multiplying eqn (17) by the adjunct matrix of ®(t) gives:

YY) = o),
0= 0y, 18)
W) = adi{G@Y (D), (

o) = adj{®()}P(t) = det{P(t)}.
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Note that the system eqn (18) contains ten independent scalar equations:
¥t = ¢®)0, (19)
where i = 1,10.
3.3 Parameters estimation

The estimates of the parameters ©; can be obtained using standart gradient descent method
from the scalar regression model (eqn (19)):

0.(0) = () (¥:(0) - $(OBW), (20)

where 8;(t) is the estimate of the parameter ©;, y; > 0 is the adaptation gain, i = 1,10.
Consider the expression for the parameter estimation error 8;(t) = ©;(t) — 0;,i = 1,10:

0:;(t) = —y; P*(O6; (V). (21)
The solution of the differential eqn (21) has the following form:
B,(t) = 8,(tg)e e ¥, (22)

The zero equilibrium of the linear time-varying system (eqn (21)) is asymptotically stable
if d(t) ¢ L,, that is:

limt_,wftz d%(s)ds = o, (23)

then lim,,.,0;(t) = 0, i = 1,10, in otherwords, the norm of the estimation errors
converges to zero.

4 SIMULATIONS
In this section, we present simulation results that illustrate the efficiency of the proposed
estimation algorithm. All simulations have been performed in MATLAB-Simulink.
A model of the Mariner class vessel L = 160.93 m is taken as the simulations object. The
principal dimensions of the ship are given in Table 1.

Table 1: Principal dimensions of the ship.

Parameter Magnitude
Length (L) 160.93 m
Non-dimensional mass (m) 798 x 107°
Non-dimensional inertia in yaw (1) 39.2x 1075
x-coordinate of centre of gravity (x;) —0.023 m

The rudder angle § is plotted in Fig. 1.

The hydrodynamic coefficients obtained by Chislett and Stroem-Tejsen (1965, Planar
Motion Mechanism Tests and Full-Scale Steering and Maneuvering Predictions for a Mariner
Class Vessel, Technical Report Hy-5, Hydro- and Aerodynamics Laboratory, Lyngby,
Denmark), as given in Table 2, are used in the simulation.
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Figure 1: The rudder angle §(t).
Table 2: Magnitudes of the hydrodynamic coefficients.
Accel | Magnitude X- Magnitude Y- Magnitude N- Magnitude
coef | (x107%) | coef | (x107%) | coef | (x107%) | coef | (x107%)
Xy —42 | Xy —184 Y, —1160 N, —264
Y, —-748 | Xy —-110 Y, —499 N, —-166
Yy —-9.354 | Xyuu =215 | Y,y —8078 | Ny 1636
N, 4.646 | X, —899 | Y, 15356 | Ny, —5483
N;. —43.8 | Xy 18 | Y, —1160 | N, —264
Xss —95 | Y., —499 | N, —-166
Xuss —190 Ys 278 Ny —139
Xy 798 | Ysss —90 | Ngss 45
Xos 93 | Yyus 556 | Nys —278
Xuvs 93 | Yyus 278 | Nyys —139
Yoss —4 | Nyss 13
Yous 1190 | Nyys —489
Yo —4 N, 3
You —8 Noy 6
Youu —4 | Nowu 3

The DREM parameters are the following: @ = 10, d; = 4i, i = 1,10 for estimation 6,
and d; = 4i,i = 1,15 for 6, and 05. Plots for surge speed u(t), sway speed v(t) and yaw
rate r(t) are are depicted in Fig. 2.

In Fig. 3 the plot for Euclidean norm of the parameter estimation errors 8;(t) = 6; —

0;(t), i = 1,3 is shown. After transition period the magnitude of the parameter estimation
error is 1078, while the order of the estimated parameters is 1073.
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Figure 2: Surge speed u(t), sway speed v(t) and yaw rate r(t).
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Figure 3: The norm of the parameter estimation errors 8;(t).

5 CONCLUDING REMARKS AND FUTURE RESEARCH
In this paper we have introduced a new online parametric estimator for the 3 DOF horizontal
plane models for manoeuvring, where the hydrodynamic forces and moments are replaced
with 3rd-order truncated Taylor expansion.

The derivative of the generalized velocity is not measurable, and filtration technic has
been applied to obtain a linear regression model with measurable regressor and regressand.
Due to the high order of the obtained models, standard gradient approach cannot provide
acceptable performance. Moreover, it requires hardly verifiable persistent
excitation condition.
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In this paper, we have proposed to apply the dynamic regressor extension and mixing
(DREM) method to the constructed nth order regression model and to replace it with n the
independent first order models. To estimate parameters, the standard gradient descent method
is used. In scalar case to guarantee convergence of the estimation error to zero the new
regressor should not be square integrable. The efficiency of the proposed approach is
demonstrated through a set of numerical simulations.
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