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ABSTRACT 
The paper is devoted to the online identification of the nonlinear model of surface vessel dynamics. The 
mathematical formulation of the maritime ships is complicated due to the existence of nonlinear 
hydrodynamic forces and moments that are associated with vessel dynamics. For this reason, the 
coefficients of the model are not known, nor do they require clarification. The identification algorithm 
is based on the method of the dynamic regressor extension and mixing (DREM). On the first step using 
parameterisation, the regression model is obtained, where regressor and regressand depend on 
measurable signals: linear velocities in surge, the linear velocity in sway, the angular velocity in yaw 
and the rudder angle. At the second step, the new regression model is obtained using linear stable filters 
and delays. DREM allows replacing the regression model of the nth order with n first order regression 
models and estimate parameters separately. Finally, parameters are estimated by the standard gradient 
descent method. The efficiency of the proposed approach is demonstrated through a set of  
numerical simulations. 
Keywords: system identification, ship manoeuvring, 3 degrees of freedom, DREM. 

1  INTRODUCTION 
The mathematical model of the maritime ship is complicated due to the nonlinear nature of 
hydrodynamic forces and moments that are associated with vessel dynamics, structural and 
parametric uncertainty, the presence of external disturbances. Moreover, some parameters 
are changing over time, for example, which are related to the loading of the vessel. 
     This is the reason why the system identification methods are playing an important role in 
the modelling of ship maneuvering motion. Usually, they base on free-running model tests 
or full-scale trials.  
     Various methods are used to identify the hydrodynamic coefficients of the surface vessel 
mathematical model: model reference method (Hayes [1]), extended Kalman filter method 
(Abkowitz [2], Herrero and Gonzalez [3]), recursive prediction error method ( Zhou and 
Blanke [4]), least square method (Rhee et al. [5]), frequency domain identification method 
(Perez and Fossen [6]), neural network (Wang et al. [7]), etc. 
     In this paper, we propose an online identification algorithm based on dynamic extension 
and mixing and standard gradient descent methods. It allows estimating all parameters 
separately and provides global convergence of the estimation error to zero in the absence  
of noise. 

2  MOTIVATION 

2.1  Mathematical model 

Consider the 3 DOF horizontal plane models for manoeuvring, which are based on the  
rigid-body kinetics: 

 𝑀ோ஻𝜈ሶ ൅ 𝐶ோ஻ሺ𝜈ሻ𝜈 ൌ 𝜏ோ஻ሺ𝜈, 𝛿ሻ, (1) 
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where 𝜈 ൌ ሾ𝑢 𝑣 𝑟ሿ் is the generalized velocity, where 𝑢 is the linear velocity in surge, 𝑣 
is the linear velocity in sway, 𝑟 is the angular velocity in yaw, 𝛿 is the rudder angel; 𝑀ோ஻ is 
the rigid-body inertia matrix, 𝐶ோ஻ሺ𝜈ሻ is a matrix of rigid-body Coriolis and centripetal forces 
and 𝜏ோ஻ is a vector of the external forces and moments. A similar mathematical model of the 
vessel is considered in Sotnikova and Veremey [8], where the problem of dynamic 
positioning is solved. 
     Expanding the hydrodynamic forces and moments by 3rd-order truncated Taylor 
expansions about the steady state condition 𝑢 ൌ 𝑢଴, according to Abkowitz [2], the eqn (1) 
can be represented as: 

 ቌ
𝑚 െ 𝑋௨ሶ 0 0
0 𝑚 െ 𝑌௩ሶ 𝑚𝑥௚ െ 𝑌௥ሶ

0 𝑚𝑥௚ െ 𝑌௥ሶ 𝐼௭ െ 𝑁௥ሶ

ቍ ൭
𝑢ሶ
𝑣ሶ
𝑟ሶ

൱ ൌ ൭
𝑋
𝑌
𝑁

൱ , (2) 

where 𝑚 is the mass of the ship, 𝐼௭ is the moment of inertia about the vertical axes, 𝑥௚ is the 
longitudinal coordinate of the ship’s center of gravity, 𝑋 and 𝑌 are the longitudinal and lateral 
hydrodynamic force components, 𝑁 is the hydrodynamic yaw moment. 
     Replacing the hydrodynamic forces and moments in eqn (2) with 3rd-order truncated 
Taylor expansions, the functions 𝑋 ൌ 𝑋ሺ𝑢, 𝑣, 𝑟, 𝛿ሻ, 𝑌 ൌ 𝑌ሺ𝑢, 𝑣, 𝑟, 𝛿ሻ and 𝑁 ൌ 𝑁ሺ𝑢, 𝑣, 𝑟, 𝛿ሻ 
can be rewritten as : 

 
𝑋 ൌ     𝑋௨𝑢 ൅ 𝑋௨௨𝑢ଶ ൅ 𝑋௨௨௨𝑢ଷ ൅ 𝑋௩௩𝑣ଶ ൅ 𝑋௥௥𝑟ଶ ൅ 𝑋௥௩𝑟𝑣 ൅ 𝑋ఋఋ𝛿ଶ ൅
    ൅𝑋௨ఋఋ𝑢𝛿ଶ ൅ 𝑋௩ఋ𝑣𝛿 ൅ 𝑋௨௩ఋ𝑢𝑣𝛿,

 (3) 

 
𝑌 ൌ     𝑌௩𝑣 ൅ 𝑌௥𝑟 ൅ 𝑌௩௩௩𝑣ଷ ൅ 𝑌௩௩௥𝑣ଶ𝑟 ൅ 𝑌௩௨𝑣𝑢 ൅ 𝑌௥௨𝑟𝑢 ൅ 𝑌ఋ𝛿 ൅ 𝑌ఋఋఋ𝛿ଷ ൅
    ൅𝑌௨ఋ𝑢𝛿 ൅ 𝑌௨௨ఋ𝑢ଶ𝛿 ൅ 𝑌௩ఋఋ𝑣𝛿ଶ ൅ 𝑌௩௩ఋ𝑣ଶ𝛿 ൅ ሺ𝑌଴ ൅ 𝑌଴௨𝑢 ൅ 𝑌଴௨௨𝑢ଶሻ,

 (4) 

 
𝑁 ൌ     𝑁௩𝑣 ൅ 𝑁௥𝑟 ൅ 𝑁௩௩௩𝑣ଷ ൅ 𝑁௩௩௥𝑣ଶ𝑟 ൅ 𝑁௩௨𝑣𝑢 ൅ 𝑁௥௨𝑟𝑢 ൅ 𝑁ఋ𝛿 ൅
    ൅𝑁ఋఋఋ𝛿ଷ ൅ 𝑁௨ఋ𝑢𝛿 ൅ 𝑁௨௨ఋ𝑢ଶ𝛿 ൅ 𝑁௩ఋఋ𝑣𝛿ଶ ൅ 𝑁௩௩ఋ𝑣ଶ𝛿 ൅
    ൅ሺ𝑁଴ ൅ 𝑁଴௨𝑢 ൅ 𝑁଴௨௨𝑢ଶሻ.

 (5) 

     The constant matrix 𝑀ோ஻ is invertible, therefore eqn (2) can be rewritten in the  
explicit form:  

 𝑢ሶ ൌ     ሺ𝑚 െ 𝑋௨ሶ ሻିଵ𝑋, (6) 

 𝑣ሶ ൌ     
ଵ

ୢୣ୲ெೃಳ
మ ൣሺ𝐼௭ െ 𝑁௥ሶ ሻ𝑌 െ ൫𝑚𝑥௚ െ 𝑌௥ሶ ൯𝑁൧, (7) 

 𝑟ሶ ൌ     
ଵ

ୢୣ୲ெೃಳ
మ ൣെ൫𝑚𝑥௚ െ 𝑌௥ሶ ൯𝑌 ൅ ሺ𝑚 െ 𝑌௩ሶ ሻ𝑁൧, (8) 

where det𝑀ோ஻
ଶ ൌ ሺ𝑚 െ 𝑌௩ሶ ሻሺ𝐼௭ െ 𝑁௥ሶ ሻ െ ൫𝑚𝑥௚ െ 𝑌௥ሶ ൯

ଶ
. In (6)–(8) we assume that all 

parameters of the model are unknown. The main objective is to construct estimates 𝜃෠௜ for 
unknown parameters vectors 𝜃௜ of the described ship model, such that the norm of the 
estimation error converges to zero: 

lim௧→ஶฮ𝜃෨௜ሺ𝑡ሻฮ ൌ 0, 

where ‖⋅‖ is the Euclidean norm, 𝜃෨௜ሺ𝑡ሻ ൌ 𝜃௜ െ 𝜃෠௜ሺ𝑡ሻ, 𝑖 ൌ 1,3. 
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3  IDENTIFICATION 

3.1  Linear regression model 

Let us rewrite the surface vessel dynamic model eqns (6)–(8) in a linear regression form: 

 𝑦 ൌ 𝜑்𝜃, (9) 

where 𝑦 ൌ ሺ𝑦ଵ 𝑦ଶ 𝑦ଷሻ் is the regressand, 𝜑 ൌ ൫𝜑௜௝൯, 𝑖 ൌ 1, 𝑛, 𝑗 ൌ 1,3 is the regressor, 
𝜃 ൌ ሺ𝜃ଵ 𝜃ଶ … 𝜃௡ሻ் is the unknown parameters vector, 𝑛 is the count of unknown 
parameters of the regression model. 
     The vector 𝜃 of the unknown parameters has the following form:  

 

𝜃 ൌ     ൭
𝜃ଵ
𝜃ଶ
𝜃ଷ

൱

ସ଴ൈଵ

,

𝜃ଵ ൌ     
ଵ

௠ି௑ೠሶ
𝜃௑,

𝜃ଶ ൌ     
ூ೥ିேೝሶ

ୢୣ୲ெೃಳ
మ 𝜃௒ െ

௠௫೒ି௒ೝሶ

ୢୣ୲ெೃಳ
మ 𝜃ே,

𝜃ଷ ൌ     െ
௠௫೒ି௒ೝሶ

ୢୣ୲ெೃಳ
మ 𝜃௒ ൅

௠ି௒ೡሶ

ୢୣ୲ெೃಳ
మ 𝜃ே,

 (10) 

where vectors 𝜃௑, 𝜃௒ and 𝜃ே are unknown hydrodynamic parameters from eqns (3)–(5): 

𝜃௑ ൌ     ሺ𝑋௨ 𝑋௨௨ 𝑋௨௨௨ 𝑋௩௩ 𝑋௥௥ 𝑋௥௩ 𝑋ఋఋ …
    𝑋௨ఋఋ 𝑋௩ఋ 𝑋௨௩ఋሻ்,
𝜃௒ ൌ     ሺ𝑌௩ 𝑌௥ 𝑌௩௩௩ 𝑌௩௩௥ 𝑌௩௨ 𝑌௥௨ 𝑌ఋ …
    𝑌ఋఋఋ 𝑌௨ఋ 𝑌௨௨ఋ 𝑌௩ఋఋ 𝑌௩௩ఋ 𝑌଴ 𝑌଴௨ 𝑌଴௨௨ሻ்,
𝜃ே ൌ     ሺ𝑁௩ 𝑁௥ 𝑁௩௩௩ 𝑁௩௩௥ 𝑁௩௨ 𝑁௥௨ 𝑁ఋ …
    𝑁ఋఋఋ 𝑁௨ఋ 𝑁௨௨ఋ 𝑁௩ఋఋ 𝑁௩௩ఋ 𝑁଴ 𝑁଴௨ 𝑁଴௨௨ሻ்.

 

     From eqns (6)–(8) we can find the regressor matrix 𝜑 and the regressand 𝑦: 

 𝜑 ൌ     ൭
𝜑௑ 𝟎ଵ଴ൈଵ 𝟎ଵ଴ൈଵ
𝟎ଵହൈଵ 𝜑௒ 𝟎ଵହൈଵ
𝟎ଵହൈଵ 𝟎ଵହൈଵ 𝜑ே

൱

ସ଴ൈଷ

, (11) 

𝜑௑ ൌ     ሺ𝑢 𝑢ଶ 𝑢ଷ 𝑣ଶ 𝑟ଶ 𝑟𝑣 𝛿ଶ 𝑢𝛿ଶ 𝑣𝛿 𝑢𝑣𝛿ሻ், 

𝜑௒ ൌ 𝜑ே ൌ     ሺ𝑣 𝑟 𝑣ଷ 𝑣ଶ𝑟 𝑣𝑢 𝑟𝑢 𝛿 …
    𝛿ଷ 𝑢𝛿 𝑢ଶ𝛿 𝑣𝛿ଶ 𝑣ଶ𝛿 1 𝑢 𝑢ଶሻ்,

 

 𝑦 ൌ     ൭
𝑢ሶ
𝑣ሶ
𝑟ሶ

൱
ଷൈଵ

. (12) 

     Notice, that the functions 𝑢ሺ𝑡ሻ, 𝑣ሺ𝑡ሻ, 𝑟ሺ𝑡ሻ and 𝛿ሺ𝑡ሻ are measurable signals, but the 
derivations 𝑢ሶ ሺ𝑡ሻ, 𝑣ሶሺ𝑡ሻ, 𝑟ሶሺ𝑡ሻ are unknown. This can be handled by special filtering. Let us 
consider the linear stable operator 𝐻௙ሺ⋅ሻ, for instance, a simple exponentially stable LTI 
(Linear time-invariant) filter of the form:  

 𝐻௙ሺ𝑝ሻ ൌ
ఈ

௣ାఈ
, (13) 
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where 𝛼 ൐ 0 is the adjustable parameter, 𝑝 ≡
ୢ

ୢ௧
 is the differential operator. 

     Applying operators 𝐻௙ሺ⋅ሻ to the equation (9) yields:  

 

𝑦௙ሺ𝑡ሻ ൌ     𝜑௙
்ሺ𝑡ሻ𝜃,

𝑦௙ሺ𝑡ሻ ൌ     ൣ𝐻௙ሺ𝑦ሻ൧ሺ𝑡ሻ ൌ
ఈ

௣ାఈ
𝑦ሺ𝑡ሻ ൌ

ఈ௣

௣ାఈ
ቌ

𝑢ሺ𝑡ሻ
𝑣ሺ𝑡ሻ
𝑟ሺ𝑡ሻ

ቍ ,

𝜑௙ሺ𝑡ሻ ൌ     ൣ𝐻௙ሺ𝜑ሻ൧ሺ𝑡ሻ ൌ
ఈ

௣ାఈ
𝜑ሺ𝑡ሻ.

 (14) 

     Now, the components of the regressor matrix 𝜑௙ and the regressand 𝑦௙ are  
measurable signals. 
     Note that the matrices 𝜑 and 𝜑௙ have a block-diagonal form. Therefore, the regression 
model (eqn (14)) can be divided into three independent regression models for estimating the 
parameters 𝜃ଵ, 𝜃ଶ and 𝜃ଷ respectively:  

 𝑦௙௜ሺ𝑡ሻ ൌ     𝜑௙௜
் ሺ𝑡ሻ𝜃௜, (15) 

where 𝑖 ൌ 1,3. 

3.2  Dynamic regressor extension and mixing procedure 

The DREM procedure generates 40 new, one-dimensional, independent regression models. 
Consider the estimation method for 𝜃ଵ (from the first equation of the system (eqn (15)). 
Parameters 𝜃ଶ and 𝜃ଷ are estimating similarly. 
     Let us introduce delay operators ሾ𝐻ௗೕ

ሺ⋅ሻሿሺ𝑡ሻ ൌ ሺ⋅ሻሺ𝑡 െ 𝑑௝ሻ, where 𝑑௝ ൐ 0 is the delay 

value. Applying delay operators to the first regressor equation (15) gives:  

 

𝑦ௗೕ
ሺ𝑡ሻ ൌ     𝜑ௗೕ

் ሺ𝑡ሻ𝜃ଵ,

𝑦ௗೕ
ሺ𝑡ሻ ൌ     ቂ𝐻ௗೕ

ሺ𝑦௙ଵሻቃ ሺ𝑡ሻ ൌ 𝑦௙ଵሺ𝑡 െ 𝑑௝ሻ,

𝜑ௗೕ
ሺ𝑡ሻ ൌ     ቂ𝐻ௗೕ

ሺ𝜑௑ሻቃ ሺ𝑡ሻ ൌ 𝜑௑ሺ𝑡 െ 𝑑௝ሻ.

 (16) 

     Using different delays 𝑑௝, 𝑗 ൌ 1, dim𝜃ଵ we can construct the extended system  
of equations: 

 

𝑌ሺ𝑡ሻ ൌ     Φሺ𝑡ሻ𝜃ଵ,
𝑌ሺ𝑡ሻ ൌ     ሺ𝑦ௗభሺ𝑡ሻ 𝑦ௗమሺ𝑡ሻ … 𝑦ௗభబሺ𝑡ሻሻଵ଴ൈଵ

் ,

Φሺ𝑡ሻ ൌ     

⎝

⎜
⎛

𝜑ௗభ
் ሺ𝑡ሻ

𝜑ௗమ
் ሺ𝑡ሻ

⋮
𝜑ௗభబ

் ሺ𝑡ሻ⎠

⎟
⎞

ଵ଴ൈଵ଴

.
 (17) 

     Multiplying eqn (17) by the adjunct matrix of Φሺ𝑡ሻ gives:  

 

Ψሺ𝑡ሻ ൌ     ϕሺ𝑡ሻΘ,
Θ ൌ     𝜃ଵ,
Ψሺ𝑡ሻ ൌ     𝑎𝑑𝑗ሼΦሺ𝑡ሻሽ𝑌ሺ𝑡ሻ,
ϕሺ𝑡ሻ ൌ     𝑎𝑑𝑗ሼΦሺ𝑡ሻሽΦሺ𝑡ሻ ൌ detሼΦሺ𝑡ሻሽ.

 (18) 
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     Note that the system eqn (18) contains ten independent scalar equations:  

 Ψ௜ሺ𝑡ሻ ൌ     ϕሺ𝑡ሻΘ௜, (19) 

where 𝑖 ൌ 1,10. 

3.3  Parameters estimation 

The estimates of the parameters Θ௜ can be obtained using standart gradient descent method 
from the scalar regression model (eqn (19)): 

 Θ෡ሶ
௜ሺ𝑡ሻ ൌ 𝛾௜ϕሺ𝑡ሻ ቀΨ௜ሺ𝑡ሻ െ ϕሺ𝑡ሻΘ෡୧ሺtሻቁ, (20) 

where Θ෡௜ሺ𝑡ሻ is the estimate of the parameter Θ௜, 𝛾௜ ൐ 0 is the adaptation gain, 𝑖 ൌ 1,10. 
     Consider the expression for the parameter estimation error Θ෩௜ሺ𝑡ሻ ൌ Θ෡௜ሺ𝑡ሻ െ Θ௜, 𝑖 ൌ 1,10: 

 Θ෩ሶ
௜ሺ𝑡ሻ ൌ െ𝛾௜ ϕଶሺ𝑡ሻΘ෩୧ሺtሻ. (21) 

     The solution of the differential eqn (21) has the following form: 

 Θ෩௜ሺ𝑡ሻ ൌ Θ෩௜ሺ𝑡଴ሻ𝑒ିఊ೔ ׬
೟

೟బ
மమሺ௦ሻௗ௦. (22) 

     The zero equilibrium of the linear time-varying system (eqn (21)) is asymptotically stable 
if ϕሺ𝑡ሻ ∉ ℒଶ, that is:  

 lim௧→ஶ׬
௧

௧బ
ϕଶሺ𝑠ሻ𝑑𝑠 ൌ ∞, (23) 

     then lim௧→ஶΘ෩௜ሺ𝑡ሻ ൌ 0, 𝑖 ൌ 1,10, in otherwords, the norm of the estimation errors 
converges to zero. 

4  SIMULATIONS 
In this section, we present simulation results that illustrate the efficiency of the proposed 
estimation algorithm. All simulations have been performed in MATLAB-Simulink. 
     A model of the Mariner class vessel 𝐿 ൌ 160.93 𝑚 is taken as the simulations object. The 
principal dimensions of the ship are given in Table 1. 

Table 1:  Principal dimensions of the ship. 

Parameter Magnitude

Length (𝐿) 160.93 m 

Non-dimensional mass (𝑚) 798 ൈ 10ିହ 

Non-dimensional inertia in yaw (𝐼௭) 39.2 ൈ 10ିହ 

x-coordinate of centre of gravity (𝑥ீ) െ0.023 m

 
     The rudder angle 𝛿 is plotted in Fig. 1.  
     The hydrodynamic coefficients obtained by Chislett and Stroem-Tejsen (1965, Planar 
Motion Mechanism Tests and Full-Scale Steering and Maneuvering Predictions for a Mariner 
Class Vessel, Technical Report Hy-5, Hydro- and Aerodynamics Laboratory, Lyngby, 
Denmark), as given in Table 2, are used in the simulation.  
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Figure 1:  The rudder angle 𝛿ሺ𝑡ሻ. 

Table 2:  Magnitudes of the hydrodynamic coefficients. 

Accel 
coef 

Magnitude 
ሺൈ 10ିହሻ 

X-
coef 

Magnitude 
ሺൈ 10ିହሻ

Y-
coef 

Magnitude 
ሺൈ 10ିହሻ

N-
coef 

Magnitude 
ሺൈ 10ିହሻ 

𝑋௨ሶ  െ42 𝑋௨ െ184 𝑌௩ െ1160 𝑁௩ െ264 

𝑌௩ሶ  െ748 𝑋௨௨ െ110 𝑌௥ െ499 𝑁௥ െ166 

𝑌௥ሶ  െ9.354 𝑋௨௨௨ െ215 𝑌௩௩௩ െ8078 𝑁௩௩௩ 1636 

𝑁௩ሶ  4.646 𝑋௩௩ െ899 𝑌௩௩௥ 15356 𝑁௩௩௥ െ5483 

𝑁௥ሶ  െ43.8 𝑋௥௥௨ 18 𝑌௩௨ െ1160 𝑁௩௨ െ264 

  𝑋ఋఋ െ95 𝑌௥௨ െ499 𝑁௥௨ െ166 

  𝑋௨ఋఋ െ190 𝑌ఋ 278 𝑁ఋ െ139 

  𝑋௥௩ 798 𝑌ఋఋఋ െ90 𝑁ఋఋఋ 45 

  𝑋௩ఋ 93 𝑌௨ఋ 556 𝑁௨ఋ െ278 
  𝑋௨௩ఋ 93 𝑌௨௨ఋ 278 𝑁௨௨ఋ െ139 
    𝑌௩ఋఋ െ4 𝑁௩ఋఋ 13 
    𝑌௩௩ఋ 1190 𝑁௩௩ఋ െ489 
    𝑌଴ െ4 𝑁଴ 3 
    𝑌଴௨ െ8 𝑁଴௨ 6 
    𝑌଴௨௨ െ4 𝑁଴௨௨ 3 

 
     The DREM parameters are the following: 𝛼 ൌ 10, 𝑑௜ ൌ 4𝑖, 𝑖 ൌ 1,10 for estimation 𝜃ଵ 
and 𝑑௜ ൌ 4𝑖, 𝑖 ൌ 1,15 for 𝜃ଶ and 𝜃ଷ. Plots for surge speed 𝑢ሺ𝑡ሻ, sway speed 𝑣ሺ𝑡ሻ and yaw 
rate 𝑟ሺ𝑡ሻ are are depicted in Fig. 2. 
     In Fig. 3 the plot for Euclidean norm of the parameter estimation errors 𝜃෨௜ሺ𝑡ሻ ൌ 𝜃௜ െ
𝜃෠௜ሺ𝑡ሻ, 𝑖 ൌ 1,3 is shown. After transition period the magnitude of the parameter estimation 
error is 10ି଼, while the order of the estimated parameters is 10ିଷ. 
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Figure 2:  Surge speed 𝑢ሺ𝑡ሻ, sway speed 𝑣ሺ𝑡ሻ and yaw rate 𝑟ሺ𝑡ሻ. 

 

Figure 3:  The norm of the parameter estimation errors 𝜃෨௜ሺ𝑡ሻ. 

5  CONCLUDING REMARKS AND FUTURE RESEARCH 
In this paper we have introduced a new online parametric estimator for the 3 DOF horizontal 
plane models for manoeuvring, where the hydrodynamic forces and moments are replaced 
with 3rd-order truncated Taylor expansion. 
     The derivative of the generalized velocity is not measurable, and filtration technic has 
been applied to obtain a linear regression model with measurable regressor and regressand. 
Due to the high order of the obtained models, standard gradient approach cannot provide 
acceptable performance. Moreover, it requires hardly verifiable persistent  
excitation condition. 
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     In this paper, we have proposed to apply the dynamic regressor extension and mixing 
(DREM) method to the constructed nth order regression model and to replace it with n the 
independent first order models. To estimate parameters, the standard gradient descent method 
is used. In scalar case to guarantee convergence of the estimation error to zero the new 
regressor should not be square integrable. The efficiency of the proposed approach is 
demonstrated through a set of numerical simulations. 
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