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ABSTRACT
Predicting accurately shock wave structures in gases using an appropriate hydrodynamic model is still
a challenge in extended hydrodynamic model development in rarefied gases. In this paper, we identified
constitutive equations that provide better agreement for the prediction of shock structure in a monatomic
gas in the Mach number range 1.3–4. The results obtained show an improvement upon those obtained
previously in the bi-velocity hydrodynamics and are more accurate than in the hydrodynamic models
from expansions method solutions to the Boltzmann equation.
Keywords: shock waves, compressible flows, rarefied gas flows, constitutive relations, Navier–Stokes
equations, volume/mass diffusion.

1 INTRODUCTION
Shock wave structure description is one of the best-known example of a simple highly non-
equilibrium compressible flow problem where large gradients of hydrodynamic fields are
present [1]–[8]. Shock structure problem serves as a standard benchmark problem for testing
the capability (validity) and accuracy of different hydrodynamics and extended hydrodynamic
fluid flow models and provides few advantages in its numerical simulations: (i) flow is one-
dimensional and steady state; (ii) no solid boundaries; and (iii) the upstream and downstream
states are in equilibrium and are connected by simple relations (the Rankine–Hugoniot
relations). Theoretical and numerical studies of the shock structure based on the classical
Navier–Stokes (NS) equations are described in the literature [1], [2], [9]–[12]. In addition,
shock density measurements have been carried out and reported for argon and nitrogen gases
with Mach number that ranges from supersonic to hypersonic [13], [14]. Eventually, it has
been recognized that shock structures in monatomic gases are not well described by the
Navier–Stokes theory. The shock thickness predicted is too small compared to experiments
for Mach numbers larger than approximately 1.5 (see. Fig. 1). The failure of the equations in a
shock structure description may be tied up to the basic assumptions such as linear constitutive
relations represented by Newton’s law of viscosity and Fourier’s law of heat conduction used
in closing the system [15] and/or breakdown of continuum assumption as the mean free path
becomes comparable to the characteristic length scale of the system.

The principal parameter which is often used to classify the non-equilibrium state of a gas
flow is the Knudsen number, Kn, and is defined as the ratio of the mean free path of the gas
molecules to the characteristic length of the flow system. Kn characterizes the gas rarefaction
which means that it measures departure from the local equilibrium. Continuum assumption
is valid for vanishing Knudsen numbers where the gas can be assumed to undergo a large
number of collisions over the typical length scale. As Kn increases the notion of the gas as a
continuum fluid becomes less valid and the departure of the gas from the local thermodynamic
equilibrium increases. Therefore, the range of use of the continuum-equilibrium assumption
is limited and confined to Kn . 0.01. Generally, the shock macroscopic parameter called
the inverse shock thickness is related to the Knudsen number and typically falls between
≈ 0.2 and ≈ 0.3 [6] (which is also evident from Fig. 1). Clearly, the range of Kn found in
the shock problem is beyond the classical continuum-Kn regime and falls into the so-called
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‘intermediate-Kn’ regime (0.01 . Kn . 1). Deriving appropriate continuum hydrodynamic
models or improving the range of applicability of the existing ones (the Navier–Stokes
equations) beyond their limits into the so-called ‘intermediate-Kn’ regime (0.01 . Kn . 1)
is still a critical area of research.
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Figure 1: Variation of dimensionless inverse shock thickness (δ) verses upstream Mach
number Ma1 for a monatomic argon gas. Experimental data extracted from
Alsmeyer [13] and DSMC data extracted from Lumpkin and Chapman [16].

Recently, the authors reinterpreted shock structure predictions of the classical Navier–
Stokes equations using a change of velocity variable [17]–[19]. The results on the shock
density profiles and shock thicknesses better agreed with the experimental data. However, the
procedure predicted very less values for density asymmetry factor. The present work expands
on this previous work to identify constitutive relations with a full assessment of the shock
structure problem.

The paper is organized as follows. In Section 2 a brief overview of the classical Navier–
Stokes equations for compressible flows and the modified constitutive relations are presented.
In Section 3 the modified Navier–Stokes equations are considered subject to shock structure
problem in monatomic argon gas. The detail of the formulation of the problem and numerical
procedure are then provided. Section 4 is completely devoted to analysis based on comparison
of shock macroscopic profiles and different shock macroscopic parameters with available
experiments and other simulation data. Finally, conclusions are drawn in Section 5.

2 THE CONTINUUM FLOW EQUATIONS:
MODIFIED CONSTITUTIVE RELATIONS

The standard continuum hydrodynamic equations are a differential form of three classical
conservation laws, namely, mass, momentum and energy conservation laws that govern the
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motion of a fluid. Here, we adopt the classical conservation equations in an Eulerian reference
frame as given by:

mass balance equation
∂ρ

∂t
+∇ · [ρU] = 0, (1)

momentum balance equation

∂ρU
∂t

+ ∇ · [ρU⊗ U + p I + Π] = 0, (2)

energy balance equation

∂

∂t
[
1
2
ρU2 + ρ ein] +∇ · [

1
2
ρU2 U + ρ ein U + (p I + Π) · U + q] = 0, (3)

where ρ is the mass-density of the fluid, U is the flow mass velocity, p is the hydrostatic
pressure, ein is the specific internal energy of the fluid, Π is the shear stress tensor, I is the
identity tensor and q is the heat flux vector. All these hydrodynamic fields are functions of
time t and spatial variable x. Additionally, ∇ and ∇· denote the usual spatial gradient and
divergence operators, respectively, and U⊗U represents the tensor product of two velocity
vectors. Expression for the specific internal energy is given by, ein = p/ρ(γ − 1) with γ
being the isentropic exponent. The constitutive models for the shear stress Π and the heat
flux vector q as due to the Newton’s law and the Fourier’s law, are given respectively by,

Π(NS) = −2µ
[

1
2

(∇U +∇U′) − 1
3
I (∇ · U)

]
= −2µ ∇̊U, q(NS) = −κ∇T, (4)

where ∇U′ represents the transpose of ∇U. Coefficients µ and κ are the dynamic viscosity
and the heat conductivity, respectively.

The eqns (1)–(4) is the well known and widely accepted conventional fluid flow
hydrodynamic model for a viscous and heat conducting fluid. In the limit of vanishing
viscous and heat conducting terms, the model reduced to the simple gas dynamics model
known as Euler equations, which are used to model inviscid and non-diffusive flows. In the
present study, to investigate our shock structure problem we adapt constitutive equations from
previous studies (Dadzie [20], Brenner [21]):

Π = −2µ ∇̊U− 2µ ∇̊JD, q = −κ∇T− γ

(γ − 1)Pr
p JD, (5)

where Pr is the Prandtl number and is a dimensionless number defined as the ratio
of momentum diffusivity to thermal diffusivity, JD = κm∇ ln ρ and κm is an additional
transport coefficient, the molecular diffusivity coefficient and is here related to the kinematic
viscosity coefficient through the following relation:

κm = κm0

µ

ρ
, whereκm0 is a positive constant. (6)

It is note worthy to point here that constitutive relations given in eqn (5) are formally
those proposed in Dadzie [20], Brenner [21] and used in Greenshields and Reese [6]. The
only main difference in the current expression being the additional factor of γ/((γ − 1)Pr)
in the heat flux relation. In the following sections, we reveal that these constitutive relations
show the best prediction of the shock profile in a monatomic argon gas.
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3 THE SHOCK STRUCTURE PROBLEM IN A MONATOMIC GAS:
FORMULATION AND NUMERICAL PROCEDURE

The evolution of a monatomic ideal gas flow is determined by the density ρ, the velocity U
and the temperature T at any point in space and time. Its pressure p obeys the perfect gas law,

p = ρRT, (7)

where R = kB/m is the specific gas constant with kB and m being the Boltzmann constant
and the molecular mass, respectively. In terms of the specific heat at constant pressure, cp,
and constant volume, cv, a monatomic ideal gas is characterized by,

cp =
γ

(γ − 1)
R, cv =

1
(γ − 1)

R, (8)

such that the ratio of cp to cv , called the isentropic constant γ, is equal to 5/3.
We consider a planar shock wave propagating in the positive x-direction which is

established in a flow of a monatomic gas. For this one-dimensional flow problem, all
hydrodynamic variables are functions of a single spatial coordinate x and time t; the system
is assumed to be uniform (having no gradients) and infinite along the y- and z-directions. The
flow velocity and heat flux in the x-direction are denoted by u(x, t) and q(x, t), respectively,
and are zero in the two remaining (y and z) orthogonal directions. It is straightforward to
verify that the stress tensor has only one non-zero component, the longitudinal stress which
can be expressed as,

Πxx = − 4
3
µ
∂u
∂x
− 4

3
µκm

ρ

∂2ρ

∂x2
+

4
3
µκm

ρ2

(
∂ρ

∂x

)2

≡ Π, (9)

and the constitutive relation for the heat flux is,

q = −κ ∂T
∂x
− cp

Pr
κm ρT

∂ ln ρ
∂x

. (10)

With the above definitions, the one-dimensional reduced balance equations for the
modified Navier–Stokes model can be written in ‘conservative’ form:

∂ρ

∂t
+

∂

∂x
( ρ u) = 0, (11)

∂

∂t

(
ρu
)

+
∂

∂x

(
ρ u2 + ρR T + Π

)
= 0, (12)

∂

∂t

(
1
2
ρu2 + cv T

)
+

∂

∂x

(
1
2
ρu3 + cp ρT u + Π u + q

)
= 0. (13)

The one-dimensional classical Navier–Stokes system is obtained by setting κm = 0 in
the constitutive relations of longitudinal stress and heat flux, i.e., in eqns (9) and (10),
respectively. The corresponding Euler system is then obtained by setting Π = 0 and q = 0 in
eqns (11)–(13).

We denote the upstream (x→ −∞) and downstream (x→∞) conditions of a shock,
located at x = 0, by a subscript 1 and 2, respectively. That is the upstream and the down
stream equilibrium states are characterised by (ρ1,u1,T1) and (ρ2,u2,T2), respectively.
Across a shock, the finite jump in each state variable is given by the so-called Rankine–
Hugoniot (RH) relations [1], [2] that connect the upstream and downstream states of a shock.
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These relations can be obtained from the conservation balance laws (11)–(13) by following
the standard procedure given in [1] and employing the ideal gas equation of state. The
standard Rankine–Hugoniot relations can be obtained as:

ρ1 u1 = ρ2 u2,

ρ1 u2
1 + ρ1 R T1 = ρ2 u2

2 + ρ2 R T2,

ρ1 u3
1 + 2 cp ρ1 T1 u1 = ρ2 u3

2 + 2 cp ρ2 T2 u2.

(14)

The modified Navier–Stokes equations, for the one-dimensional stationary shock flow
configuration reduced to:

d
dx

[ρu] = 0,
d
dx
[
ρu2 + p + Π

]
= 0, (15)

d
dx

[
ρu
(

1
2

u2 + cp T
)

+ Π u + q

]
= 0. (16)

Integration of the eqns (15)–(16) leads to:

ρu = m0, ρu + ρR T + Π = p0, (17)

ρu
(

cp T +
u2

2

)
+ Π u + q = m0 h0, (18)

where m0,p0 and h0 are integration constants which represents the mass flow rate, the
stagnation pressure and the stagnation specific enthalpy, respectively, and their values can be
obtained using the well-known Rankine–Hugoniot conditions (14). In order to solve the eqns
(17) and (18), it is convenient to work with its dimensionless form. We use the following set
of dimensionless variables based on the upstream reference states (denoted with subscript 1)
as in Reese et al. [5], Reddy and Dadzie [17], and Dadzie and Reddy [22]:

ρ =
c2
1

p1
ρ =

γ

ρ1
ρ, u =

u
c1
, T =

R
c2
1

T, p =
p
p1
, x =

x
λ1
, µ =

µ

µ1
, (19)

where λ1 is the upstream mean free path which is a natural choice for a characteristic length-
scale as changes through the shock occur due to few collisions and c1 =

√
γR T1 being

the adiabatic sound speed. The upstream mean free path can be expressed as a function of
reference state variables: λ1 = λ0µ1/ρ1 c1, with λ0 = (16/5)

√
2π/γ. Dimensionless forms

of transport coefficients κ and κm are:

κ =
γ

(γ − 1) Pr
µ and κm = κm0

µ

ρ
, (20)

with the Prandtl number, Pr, equals to 2/3 for the case of a monatomic gas.
It is well-known that the viscosity and temperature relation has a noticeable effect on the

shock wave structure. Here we adopt the generally accepted temperature-dependent viscosity
power law [6], [16]: µ ∝ Ts or µ = αTs, where α is a constant of proportionality taken to
be γs and the power s for almost all real gases falling between 0.5 ≤ s ≤ 1, with the limiting
cases, s = 0.5 and s = 1 corresponding to theoretical gases, namely, the hard-sphere and
Maxwellian gases, respectively. In our simulations we use s = 0.75 for a monatomic argon
gas.
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The nondimensionalized form of the integral conservation eqns (17) and (18) can then be
obtained using the dimensionless quantities defined via eqns (19) and (20) as:

ρ u = m0, − 1
λ0 Ma1

Π =
T
u

+ u − p0, (21)

− (γ − 1)
λ0 Ma1

q = T − (γ − 1)
2

u2 + (γ − 1) p0 u − h0, (22)

where Ma1 is the upstream Mach number defined as the ratio of the speed of the gas to the
speed of sound through the gas, Ma1 = u1/c1. Expressions for the quantities m0, p0 and h0

can be then obtained as,

m0 = γMa1, p0 =
1

γMa1

(
1 + γMa2

1

)
, h0 = 1 +

(γ − 1)
2

Ma2
1, (23)

and the expressions for the dimensionless shear stress (π) and the heat flux (q) are given by,

Π = −4
3
µ

du
dx
− 4

3

(
γ

λ0

)
µκm

ρ

d2ρ

dx2 +
4
3

(
γ

λ0

)
µκm

ρ2

(
dρ
dx

)2

, (24)

q = −κ dT
dx
− γ

(γ − 1) Pr
κm T

dρ
dx
. (25)

We solve the final eqns (21) and (22) using a numerical scheme, namely, finite difference
global solution (FDGS) technique developed by Reese et al. [5] with well-posed boundary
conditions. For the specific details of FDGS scheme reader can refer to Reese et al. [5].

4 NUMERICAL RESULTS AND COMPARISON OF HYDRODYNAMIC
FIELDS ACROSS THE SHOCK LAYER

We perform numerical simulations of stationary shock waves located at x = 0 using
FDGS scheme by considering a computational spatial domain of length 100λ1 covering
(−50λ1, 50λ1) with a step size equal to ≈ 0.05λ1. This domain is wide enough to contain
the entire shock profile for weak shocks (Ma1 ∼ 1) without altering its structure in a
monatomic argon gas. We assume the constant κm0 in the molecular mass diffusivity κm

to be 0.5 in all our present simulations and for this value of κm0 the system is linearly
stable. To compare the shock structure profiles among the theoretical and experimental data,
the position x has been scaled such that x = 0 corresponds to a value of the normalized
gas density ρN = (ρ− ρ1)/(ρ2 − ρ1) equals 0.5. Other hydrodynamic field, namely, the
velocity profiles are normalised via: uN = (u− u2)/(u1 − u2). Fig. 2(a) and (b) shows the
comparison of the normalised velocity profiles obtained from the classical and the present
modified Navier–Stokes equations for Ma1 = 1.55 and Ma1 = 4, respectively. As the flow
varies from supersonic to subsonic across the shock, the velocity is maximum/high at the
upstream part of the shock, decreases through the shock and attains its smallest value at the
downstream part of the shock. The velocity profiles obtained from the modified NS model
are more diffusive than the classical NS profile at both upstream and downstream part of the
shock which is evident from Fig. 2.

4.1 Density profiles across the shock

Experimental data exist for monatomic argon gas density variations across shock layer.
We take a detailed comparison of density field across the shock with experimental results
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Figure 2: Variation of normalized velocity (uN) profiles in Ar shock layer: for (a) Ma1 =
1.55; and (b) Ma1 = 4.

of Alsmeyer [13] and also with the classical Navier–Stokes equations. Fig. 3 show the
normalized density ρN profiles through an argon shock wave as predicted by the modified
Navier–Stokes and the classical Navier–Stokes equations compared with the experimentally
measured density data. Panels (a), (b), (c) and (d) of Fig. 3 correspond to upstream Mach
numbers of Ma1 = 1.55, 2.05, 3.38 and 3.8, respectively. In each panel: the dotted black lines
represent solutions of the Navier–Stokes equations and the red lines represent solutions by the
modified Navier–Stokes equations. The filled blue circles represent the experimental data of
Alsmeyer [13]. From panel (a) of Fig. 3 one observes that for the upstream Mach number of
1.55 the classical Navier–Stokes is able to predict well the upstream part of the shock layer
in comparison with the experimental data but completely fails to predicts the downstream
part of the shock layer. The modified Navier–Stokes equations produce good agreement with
the experimental data with a small disparity at the upstream part of the shock layer and
is more diffusive than the experimental data. The modified Navier–Stokes predictions for
the normalized density profiles show excellent agreement with the experimental data for the
upstream Mach number of Ma1 = 2.05, 3.38 and 3.8, which is evident from panels (b)–(d)
of Fig. 3. Overall, an excellent agreement between predictions of the modified Navier–Stokes
equations and the experimental data of Alsmeyer [13] is found for weak shocks (Ma1 ∼ 1)
to moderate strong shocks (Ma1 ∼ 4), which is seen in Fig. 3.

4.2 Shock macroscopic parameters: shock thickness and density asymmetry

We discuss in this section two important parameters, namely, shock thickness Lρ and density
asymmetry factor Qρ which are often used to characterize the shock wave properties instead
of comparing full shock wave profiles. These two shock macroscopic parameters are defined
based on shock density profiles. The usual shock thickness or width Lρ is defined as
(Greenshields and Reese [6], Reddy and Alam [7], [8], Gilbarg and Paolucci [10], Pham-
Van-Diep et al. [12] and Alsmeyer [13]):

Lρ =
ρ2 − ρ1

|max(dρ
dx )|

, (26)
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Figure 3: Variation of normalized density (ρN) profiles in Ar shock layer: for (a) Ma1 =
1.55; (b) Ma1 = 2.05; (c) Ma1 = 3.38; and (d) Ma1 = 3.8.

and is based on the density profile and depends mainly on the central part of the shock wave.
Note that from the definition of L, one can infer that it has a linear dependence on the density
difference between the upstream and downstream states and inversely proportional to a slope
corresponding to the maximum density gradient. In general, the non-dimensional inverse
shock thickness δ = λ1/Lρ is used instead of shock thickness Lρ to compare computational
results with experiments as it possesses an important feature that is, it represents actually the
Knudsen number of the shock structure flow problem.

In Fig. 4, the prediction of the modified Navier–Stokes equations (red line with filled
rhombus ) for reciprocal shock thickness (δ) as a function of upstream Mach number (Ma1)
are compared with the theoretical results from Burnett equations [16] (double dot dashed
line), a second-order continuum equations of Paolucci and Paolucci [23] (dash dot line)
along with the Alsmeyer experimental data (open and filled circles) and also with the DSMC
data (filled squares). Predictions from the classical Navier–Stokes with s = 0.75 (see black
dotted line) are also presented for the sake of completeness. From Fig. 5, one can observe
that the classical Navier–Stokes equations with s = 0.75 predict the higher reciprocal shock
thickness than the measured values over the entire Mach number range presented. In other
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Figure 4: Variation of the dimensionless inverse shock thickness (δ) verses upstream Mach
number Ma1. Line with dot (red) represent modified Navier–Stokes solution with
κm0 = 0.5 and s = 0.75, dashed line (black) shows present solutions of the NS
with s = 0.75 using FDGS technique, results from Burnett theory and DSMC [16],
second-order continuum theory [23] and experiments [13] are superimposed.

words we can say that the classical Navier–Stokes equations predicts very small values for
the shock thickness (Lρ). While the predictions from the modified Navier–Stokes equations
with s = 0.75 is found to follow very closely the experimental results of Alsmeyer [13]
(see filled blue circles). It can be seen that the predictions of the modified NS equations
show a close reasonable agreement with the DSMC results of Lumpkin and Chapman [16]
at all upstream Mach numbers ranging from Ma1 = 1.55 to 4. Some deviations from the
Alsmeyer experimental results are observed in Burnett and second-order continuum model
of Paolucci and Paolucci [23] which is evident from Fig. 4. Overall, judged by the inverse
shock thickness, it has been found from Fig. 4 that the modified Navier–Stokes model gives
good agreement with the experimental results of Alsmeyer [13] and a reasonable good
agreement with the DSMC results [16]. Furthermore, the inverse shock thickness predictions
of the modified NS equations showed improvement over the Burnett and the second-order
continuum models.

A second important shock macroscopic parameter called the density asymmetry factor
Qρ can be used to describe the actual shape of the shock structure as it measures skewness of
the density profile relative to its midpoint [6]. The shock asymmetry, Qρ, is defined based on
the normalized density profile, ρN, with its centre, ρN = 0.5, located at x = 0, as

Qρ =

∫ 0

−∞ ρN(x) dx∫∞
0

[1 − ρN(x)] dx
. (27)
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Figure 5: Variation of density asymmetry or shape factor (Qρ). Line with dot (red) represent
modified Navier–Stokes solution with κm0 = 0.5 and s = 0.75, dashed line
(black) shows present solutions of the NS with s = 0.75 using FDGS technique,
results from Brenner Navier–Stokes [6], second-order continuum theory [23] and
experiments [13], [14] are superimposed.

From eqn (27) it is clear that, a symmetric shock wave profile will have a density asymmetry
quotient of unity, while for realistic shock waves its value is around unity and asymmetric
shock profiles are predicted in experiments for strong hypersonic shock waves for which Qρ

is always grater than unity.
Predictions of the modified Navier–Stokes equations for the density asymmetry quotient

Qρ compared with experimental data of Alsmeyer [13] and Schmidt [14] along with the
other theoretical predictions from the classical Navier–Stokes, a second-order continuum
theory of Paolucci and Paolucci [23] and Brenner Navier–Stokes equations [6] are shown
in Fig. 5. One can observe that the classical Navier–Stokes equations predict an asymmetry
quotient of more than unity (which means that the upstream part of the shock profile is more
skewed than at the downstream) at all upstream Mach numbers and are far away from the
experimental predictions. Brenner Navier–Stokes equations predict Qρ < 1 for all upstream
Mach numbers studied. In contrast to the predictions of classical and Brenner Navier–Stokes,
it is experimentally found and reported that the density profile has a significant asymmetry
(Qρ = 1± 0.15) at all upstream Mach numbers. The modified Navier–Stokes predicts an
asymmetry quotient of around unity at low upstream Mach numbers and its value increases
with shock strength which is evident from Fig. 5. It can be seen that the current modified
Navier–Stokes and second-order continuum theory of Paolucci and Paolucci [23] are better in
predicting reasonable density asymmetry factor at all upstream Mach numbers range studied
here.
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5 CONCLUSIONS
In this work we presented a numerical investigation into shock wave profile description in
a monatomic gas using hydrodynamics models by identifying constitutive equations that
provide better agreement for the parameters involved in the prediction. A detailed comparison
between the predictions of the modified hydrodynamic equations with Alsmeyer’s
experimental data and DSMC data along with classical Navier–Stokes hydrodynamic
solutions presented for upstream Mach number range 1.3 to 4. First, we focused our
comparison for shock density profiles as accurate data from the experiments are available.
Second, we showed the comparison of two well-known shock macroscopic parameters
(inverse shock thickness and density asymmetry factor) with available experimental
and DSMC data. Our analysis showed that the constitutive equations provide excellent
quantitative agreement with experimental data as well as with DSMC data at all Mach
numbers discussed and especially best in reproducing experimental trends for the shock
density and inverse shock thickness profiles. In fact we conclude that the results are
improvement upon those obtained previously in bi-velocity hydrodynamics and showed
improvements over those obtained using equations from the extended hydrodynamic
approach of kinetic theory. Further implications of these results as related to recently
proposed recast Navier–Stokes equations are still to be investigated.
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