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ABSTRACT 
In computational fluid dynamics (CFD) simulations, verification is the process of identifying both the 
spatial and the temporal discretisations providing relatively insensitive model results. The underlying 
goal of this task is to identify the mesh with a lower number of elements and the longer time step size 
compatible with the purposes of the study. In this manner, the computational burden associated with 
CFD methods may be decreased without compromising the accuracy of the numerical results. In 
general, this process is accomplished by studying three meshes with increasing discretisation levels 
(coarse, medium and fine), expecting that the medium one would provide satisfactory results. Once 
the satisfactory spatial discretisation level is selected, the different time step sizes are studied, taking 
into account that a Courant number (Co) of 1 is usually considered the maximum allowable value for 
numerical stability when adopting a LES (Large Eddy Simulation) approach. In this study, a detailed 
verification study considering two different approaches, providing the uncertainty level of several 
parameters of interest depending on the spatial and temporal discretisation is reported. The first of 
them consists in the curve fitting of linear or quadratic curves to selected model outputs; meanwhile 
the second approach relies on the Richardson extrapolation principle. These two different approaches 
are applied in the frame of the 3D LES numerical simulations of the Stonecutters bare deck geometry. 
In the study the focus is put on the sensitivity of the integral parameters, that is the force coefficients 
and Strouhal number, with the spatial and temporal discretisations. 
Keywords:  LES, stonecutters bridge, verification, uncertainty, force coefficients, Strouhal number. 

1  INTRODUCTION 
The terms of verification and validation must be used carefully as they refer to different 
specific processes, as it was stressed by Roache [1] in the context of computational fluid 
dynamics (CFD) computations. In this regard, verification consists of “solving the 
equations right”, therefore it is a mathematical process, meanwhile validation refers to 
“solving the right equations”, for which a sound scientific and/or engineering understanding 
of the phenomenon under study is needed, if the previous statement has to be fulfilled. 

In bridge engineering applications it is common practice to carry out verification studies 
based on the evolution of certain parameters in three meshes with increasing grid 
refinement, aiming at reaching results not influenced by the level of discretisation. This 
procedure has been used in Álvarez et al. [2] and Laima et al. [3], although this kind of 
studies does not provide uncertainty levels of the parameters under study, which according 
to Oberkampf and Roy [4] is one of the four key factors to bring credibility and accuracy to 
the presented results, generating information of quality of a physical phenomenon, process 
or system. 

According to American Society of Mechanical Engineers [5], verification is comprised 
of code verification and solution verification. The former is related to the accuracy in 
solving the mathematical model incorporated in the code, meanwhile the latter estimates the 
numerical accuracy of a particular calculation. Code verification is usually assumed [5], 
although as reported by Roache [1], it could be done by applying the method of 
manufactured solutions. Regarding solution verification, it is comprised by round off errors, 
due to the precision of computers, iterative errors, especially in time dependent solutions, 

Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow  115

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 132, © 2021 WIT Press

doi:10.2495/MPF210101



and discretisation errors, due to the approximations made to transform the partial 
differential equations defining the flow into a system of algebraic equations [6]. 
Discretisation errors decrease as the grid resolution increases and, in general, it is the 
dominant source of uncertainty in practical CFD applications [6]. In this piece of research it 
is assumed that both the round-off and iterative errors are negligible, which in any case 
have to be two to three orders of magnitude lower than the discretisation error in order to 
guarantee a negligible influence [5]. 

The methods used in this paper, which to the author’s knowledge is the first application 
of this methods to a bridge engineering application, are based on power series expansions, 
specifically the one depicted in Celik  et al. [7] and the one presented by Eça and Hoekstra 
[6]. Therefore a quantifiable method is proposed for selecting the mesh with reasonable 
computational burdens and level of uncertainty. 

2  FORMULATION 

2.1  Governing equations 

The movement of a fluid is defined by the Navier–Stokes equations. When they are 
modelled using a Large Eddy Simulation (LES) approach, the original equations are 
spatially filtered resulting in the following pair of equations [8]: 
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where 𝑢ത is the filtered velocity, 𝑝̅ is the filtered pressure, 𝑥 is the space coordinate, 𝑡 is the 
time, 𝜈 is the kinematic viscosity and 𝜌 is the fluid density. 

Using the Boussinesq assumption, the sub-grid stress tensor is expressed as: 
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where 𝜈௧is the subgrid-scale turbulent viscosity. 

The turbulence model selected for the present work is the Smagorinsky model [9]. This 
models is based on the assumption of equilibrium between the small resolved scales, 
dissipating the small ones all the energy extracted from the resolved ones. Moreover, it 
obeys the following equation: 
 

𝜈௧ ൌ ሺ𝐶ௌΔሻଶ൫2𝑆పఫതതതത 𝑆పఫതതതത൯
ଵ/ଶ

, (4) 

 
where 𝐶௦ is the Smagorinsky constant, 𝑆పఫതതതത is the filtered strain rate tensor and Δ is the 
characteristic spatial length of the filter, related to the mesh size, and defined as the cubic 
root of the mesh cell volume Δ ൌ ሺΔ𝑉௜ሻଵ/ଷ. 
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2.2  Force coefficients and Strouhal number 

The time dependent force coefficients (drag (𝐶ௗ), lift (𝐶௟) and moment (𝐶௠)) along with the 
Strouhal (St) number, also referred to as integral parameters, are calculated according to 
eqn (5): 
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where C stands for the width of a single box (see Fig. 1), D is the depth of a single box, 𝜌 is 
the air density, U is the free-stream velocity, f is the dominant frequency of the lift 
coefficient, and 𝐹஽, 𝐹௅ and M are the drag and lift forces and moment per unit of length, 
which were calculated as the spanwise averaging of the integration of the pressure and 
viscous forces along the twin-box surfaces. The sign convention of the force coefficient is 
depicted in Fig. 1. 

In the following, the time averaged force coefficients values will be referred as 𝐶௞തതത and 
their standard deviations as 𝐶௞෪ ሺ𝑘 ൌ 𝑑, 𝑙, 𝑚ሻ. 
 

 

Figure 1:  Sign convention. 

2.3  Uncertainty calculation 

For the calculation of the uncertainty due to the spatial discretisation of the integral 
parameters, the method described in Celik  et al. [7], referred to here as “ASME method” 
and the one described in Eça  and Hoekstra [6], named in the following as “Eça’s method”, 
are used. As previously commented, both methods are based on power expansion series, 
whose basic equation for estimation of the discretisation error (𝜖) is: 
 

𝜖థ ≃ 𝛿ோா ൌ 𝜙௜ െ 𝜙଴ ൌ 𝛼ℎ௜
௣, (6)

 
where 𝜙௜ is the parameter for which the uncertainty is to be calculated, 𝜙଴ is the estimated 
exact solution, 𝛼 is a constant, h is the representative cell size and p is the observed order of 
grid convergence. 

According to Eça and Hoekstra [6] there are two assumptions that must hold for 
application of eqn (6): the grids are in the asymptotic range to guarantee that the leading 
term of the power series expansion is sufficient to estimate the error, and the level of 
refinement of the mesh can be represented by a single parameter, a representative cell size. 

In both methods the representative cell size is calculated as: 
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where N is the overall number of elements and Δ𝑉 is the cell volume. 

2.3.1  ASME method 
This method requires of three meshes with increasing refinement level, therefore  
ℎଵ ൏ ℎଶ ൏ ℎଷ, and thus 1 refers to the fine mesh and 3 to the coarse one. The grid 
refinement factor 𝑟 ൌ ℎଷ/ℎଵ, has to be greater than 1.3 [7]. 

Eqns (8)–(11) show how the apparent order p of the method is calculated. 
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Negative values of 

ఢయమ
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൏ 0 are indicative of oscillatory convergence. The next step is to 

calculate the extrapolated values as: 
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Moreover, along with the apparent order p, the approximate relative error (𝑒௔ see eqn 
(13)), the extrapolated relative error (𝑒௘௫௧, see eqn (14)) and the grid convergence index for 
the fine mesh (𝐺𝐶𝐼௙௜௡௘, see eqn (15)) has to be calculated and reported. 
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The uncertainty for each grid is calculated as shown in eqn (16). For further information 

about this method the interested reader is referred to Roache [1] and Celik et al. [7]. 
 

𝑈ଵ ൌ േ𝐺𝐶𝐼௙௜௡௘
ଶଵ 𝜙ଵ. (16) 
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2.3.2  Eça’s method 
In this method three alternatives equations are considered in eqn (6) for estimating the 
discretisation error: 
 

𝜖థ ≃ 𝛿௙ ൌ 𝜙௜ െ 𝜙଴ ൌ 𝛼ℎ௜, (17) 

𝜖థ ≃ 𝛿௦ ൌ 𝜙௜ െ 𝜙଴ ൌ 𝛼ℎ௜
ଶ, (18) 

𝜖థ ≃ 𝛿௙௦ ൌ 𝜙௜ െ 𝜙଴ ൌ 𝛼௙ℎ௜ ൅ 𝛼௦ℎ௜
ଶ. (19) 

 
To avoid unreliable results, at least four grids (𝑛௚ ൒ 4) must be used to obtain a 

redundant system, which provides a quality check on the value of the apparent order of the 
method, and the unknowns in eqns (6) and (17)–(19) can be obtained by means of a least-
squares approach. In this regard, the following equations should be minimised: 
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With associated standard deviations: 
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Non-weighted and weighted approaches are used when performing the calculations. For 

the non-weighted approach, 
 

𝑤௜ ൌ 1, 𝑛 ൌ 1, (28) 
 
meanwhile for the weighted approach, 
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, 𝑛 ൌ 𝑛௚. (29) 

To calculate the discretisation uncertainty, first, eqn (6) is solved, for both the weighted 
and non-weighted approach. If the value of p of the two fits is 0.5 ൑ 𝑝 ൑ 2, the apparent 
order of the method is the one with the smallest standard deviation. If only one of the fits is 
inside the previous range, p is the one associated with that fit. Otherwise, if the observed 
apparent order of the method is 𝑝 ൐ 2, then eqns (17) and (18) are solved. In case of been 
𝑝 ൏ 0.5, the eqns (17)–19 have to be solved. In all cases for both approaches, and selecting 
the apparent order of the method from the fit exhibiting the lower of the standard 
deviations. 

Afterwards, the data range parameter, defined in eqn (30), is calculated in order to 
assess the quality of the fit. 
 

Δథ ൌ
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. (30) 

 
With this value and the apparent order of the method, the safety factor is calculated as: 

 

൜
𝐼𝑓 0.5 ൑ 𝑝 ൏ 2.1 𝑎𝑛𝑑 𝜎 ൏ ∆థ, 𝐹௦ ൌ 1.25

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝐹௦ ൌ 3.0
. (31) 

 
Finally the uncertainty is calculated as: 

 

ቐ
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𝜎
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൫ห𝜖థሺ𝜙௜ሻห ൅ 𝜎 ൅ ห𝜙௜ െ 𝜙௙௜௧ห൯

. (32) 

 
For further information on the method the interested reader is referred to Eça and 

Hoekstra [6] and Rocha et al. [10].  
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Moreover, a slight modification of the previous model is proposed, which consists of 
setting the safety factor always equal to 1.25. This modification is based on three points: 

 The recommendation of American Society of Mechanical Engineers [5] for using this 
less conservative value. 

 The consideration of acceptable values of p outside of the range described in eqn (31) 
in Celik et al. [7]. 

 Eça’s method was tested on simulations performed with a modification of the SIMPLE 
algorithm, which is thought for steady responses, and which is not the case for the 
application presented in this work.  

3  MODELLING AND COMPUTATIONAL APPROACH 
This study is performed over the geometry of the bare deck cross section of the 
Stonecutters bridge without modelling the transversal beams linking the boxes. The integral 
parameters are obtained by means of static 3D LES simulations, which were carried out 
using the CFD software OpenFOAM. The convective terms were discretised by using the 
second order upwind differencing scheme, while the second order central difference 
scheme was applied to the diffusive terms. The second order backward scheme was used 
for the advancement in time, and finally, the pressure-velocity coupling was solved by the 
PIMPLE algorithm. 

The overall fluid domain is depicted in Fig. 2(a), their main dimensions are shown in 
Table 1. The spanwise dimension in this study is equal to the width of a single box. 

At the inlet Dirichlet conditions were applied to the velocity and turbulent kinetic 
energy, meanwhile Neumann conditions were imposed to the pressure. At the outlet, 
Dirichlet conditions were applied to the pressure, and Neumann conditions to the velocity 
and turbulent kinetic energy. For the upper, lower and lateral faces, symmetric boundary 
conditions were applied. The incoming flow has a turbulence intensity of 0.0%. In the deck 
walls no penetration and no-slip boundary conditions were applied. 

4  MESH CHARACTERISTICS 
Two types of meshes were used for the discretisation of the fluid domain, a structured 
quadrangular one for the boundary layer and in the spanwise dimension, as the meshes were 
generated by extrusion, and an unstructured quadrangular mesh for the rest of the XY plane. 
This plane has been subdivided in different regions, whose outline is depicted in Fig. 2(b). 

In Table 2, the non-dimensional sizes of the cells located in the boundaries of each zone 
are presented. Their size increase as they are placed further away from the deck. For Zone 
L, only the sizes of the elements located in its right bound are presented, as the size of the 
elements located in its upper and lower limits grow following a geometric series, starting 
from the size of Zone K, till reaching the one reported for Zone L. The elements of the right 
borders of Zone M, also increase following a geometric series, from the size of the 
elements in Zone L to the ones of Zone M. On the other hand, the characteristics of the 
boundary layer, the same for all the meshes considered herein, are presented on Table 3. 

All the simulations were run at a 𝑅𝑒஽ ൌ 4.48 ⋅ 10ହ and Courant number Co = 1, 
presenting all the meshes a mean 𝑦ା value, calculated as indicated in Bruno et al. [8], very 
close to 1. 
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(a) 

 
(b) 

Figure 2:    (a) Overall fluid domain; and (b) Different zones in which the XY plane mesh 
is subdivided. (Not to scale.) 

Table 1:    Overall fluid domain dimensions. B is the deck width, and C and D are the width 
and height of each individual box. 

Λ௫ Λ௬ 𝒟௫ 𝒟௬ 𝒟௭ 

15C 15C 40C + B 30C + D C

Table 2:    Cell sizes on the borders of the different discretisation zones. The lower the 
number of the mesh, the higher the level of refinement is. All the values are non-
dimensional, as the sizes have been divided by C. The computational cost was 
calculated over a dimensionless time unit ሺ𝑡∗ ൌ 𝑡𝑈/𝐶 ൌ 1ሻ. 

Mesh Zone K Zone L Zone M Zone N #elements #of cores 
Time per 

core (hours) 
1 0.008 0.083 0.208 0.418 8598192 48 1.262 
2 0.014 0.109 0.251 0.559 7121232 48 1.033 
3 0.021 0.145 0.33 0.8 3218112 48 0.423 
4 0.031 0.2 0.45 1.0 1970208 48 0.254 

122  Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 132, © 2021 WIT Press



Table 3:    Boundary layer mesh properties. The parameter 𝑦ଵ is the height of the first 
element of the boundary layer (BL) mesh, C is the width of a single box, 𝑥ଵ is 
the length of first element in the BL, r is the growth ratio of the elements in the 
BL, 𝑛஻௅ is the number of layers forming the BL mesh, 𝑦஻௅ is the total height of 
the BL mesh, 𝛿௭ is the length of the cell in the spanwise dimension and 𝑛௭ is the 
number of elements in the spanwise dimension. 

𝑦ଵ/𝐶 𝑥ଵ/𝑦ଵ r 𝑛𝐵𝐿 𝑦𝐵𝐿/𝐶 𝛿𝑧/𝐶 𝑛𝑧 

0.0007 4 1.32 6 0.0088 0.021 48 

5  
5  RESULTS 

In Table 4, the values of the integral parameters, obtained from the 3D LES simulations, for 
all the meshes considered are presented. The convergence criteria followed for the mean 
and standard deviations of the force coefficients, as well as the Strouhal number, is based 
on the residuals of the corresponding variables. The residuals for a generic q variable were 
calculated as 𝜑௥௘௦ ൌ |ሺ𝑞௡ െ 𝑞௡ିଵሻ/𝑞௡| ⋅ 100 (n is the number of sampling windows), and 
the simulations were extended until the residual value was lower than 5%, as indicated in 
Bruno et al. [8]. These residuals were obtained for increasing lengths of the sampling 
window 𝑇௡, with 𝑇଴ ൌ 50 and 𝑇௡ ൌ 𝑇௡ିଵ ൅ 50 (in non dimensional time units ((tU)/D)) 
(see Fig. 3). These values are the ones used for the calculation of the discretisation 
uncertainty. In Table 5, the results of applying the ASME method described in Celik et al. 
[7] are presented, as well as all the mandatory parameters when using this method. They 
have been calculated using meshes 1, 3 and 4. 

Table 4:  Integral parameters values for the meshes considered in this study. 

Mesh 𝐶ௗതതത 𝐶௟ഥ  𝐶௠തതതത 𝐶ௗ෪ 𝐶௟෩  𝐶௠෪  St 

1 0.151 –0.263 0.226 0.023 0.166 0.076 0.247 

2 0.153 –0.267 0.210 0.024 0.180 0.076 0.247 

3 0.153 –0.260 0.206 0.027 0.202 0.090 0.244 

4 0.154 –0.244 0.183 0.033 0.244 0.118 0.235 
 
Continuing with the alternative method (Eça’s method), the values of the discretisation 

uncertainty obtained are presented in Table 6, in this case the values of the integral 
parameters provided by the four meshes are used. It can be observed that the uncertainty 
values yielded by the modified version of the model ൫𝑈௜

௠௢ௗ, 𝑖 ൌ 1, … ,4൯ are smaller than 
the ones presented by the original version of the method. 
     It is observed that the ASME method provides higher uncertainty values for coarser 
meshes, meanwhile this is not always the case for Eça’s method. This can be explained by 
the fact that, in the calculation of the uncertainty shown in eqn (31), one of the elements is 
the difference between the value of the parameter obtained in the simulation and the fitted 
one. Moreover, this phenomenon could be explained by the fact of using only four meshes, 
although further investigation has to be conducted in this regard, and also the demanding 
computational needs of the 3D LES simulations, makes the increment of the number of 
simulations a cumbersome task. 
 
 

Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow  123

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 132, © 2021 WIT Press



 
(a) 

 

 
(b) 

Figure 3:    (a) Integral parameters evolution; and (b) Integral parameters residuals for 
increasingly longer sampling windows, for mesh 3. Red color refers to 
statistical properties of the drag coefficient, black for the lift coefficient and 
blue for the moment coefficient, green color refers to the Strouhal number. 

 
 

124  Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 132, © 2021 WIT Press



Table 5:  Spatial discretisation uncertainty using the ASME method. 

 𝐶ௗതതത 𝐶௟ഥ  𝐶௠തതതത 𝐶ௗ෪ 𝐶௟෩ 𝐶௠෪  St 

𝑁ଵ, 𝑁ଷ, 𝑁ସ 8598192, 3218112, 1970208
ℎଵ, ℎଷ, ℎସ 4.881𝑒ିଷ, 5.198𝑒ିଷ, 6.773𝑒ିଷ

𝑟ଷଵ 1.388
𝑟ସଷ 1.178
𝜙ଵ 0.151 –0.263 0.226 0.023 0.166 0.076 0.247 
𝜙ଷ 0.153 –0.260 0.206 0.027 0.202 0.090 0.244 
𝜙ସ 0.154 –0.244 0.183 0.033 0.244 0.118 0.235 
p 2.990 11.661 3.507 4.653 3.588 6.190 7.858 

𝜙௘௫௧
ଷଵ  0.150 –0.263 0.236 0.021 0.149 0.074 0.248 

𝜙௘௫௧
ସଷ  0.150 –0.263 0.235 0.021 0.149 0.074 0.248 

𝑒௔
ଷଵ 1.138% 1.047% 8.999% 18.059% 21.959% 18.417% 1.333% 

𝑒௔
ସଷ 1.136% 6.202% 11.215% 22.301% 20.791% 31.380% 3.824% 

𝑒௘௫௧
ଷଵ  0.689% 0.023% 4.010% 5.295% 10.874% 2.872% 0.110% 

𝑒௘௫௧
ସଷ  1.835% 1.070% 12.649% 24.311% 35.221% 21.819% 1.441% 

𝐺𝐶𝐼௙௜௡௘
ଷଵ  0.856% 0.029% 5.222% 6.286% 12.259% 3.492% 0.137% 

𝐺𝐶𝐼௠௘ௗ௜௨௠
ସଷ  2.253% 1.352% 18.100% 24.446% 32.559% 22.389% 1.828% 

𝐺𝐶𝐼௖௢௔௥௦௘ 9.781% 415.186% 101.314% 240.230% 189.642% 468.025% 86.679% 
𝑈௙௜௡௘

ଷଵ  1.292𝑒ିଷ 7.701𝑒ିହ 1.180𝑒ିଶ 1.417𝑒ିଷ 2.030𝑒ିଶ 2.658𝑒ିଷ 3.398𝑒ିସ 
𝑈௠௘ௗ௜௨௠

ସଷ  3.441𝑒ିଷ 3.512𝑒ିଷ 3.722𝑒ିଶ 6.506𝑒ିଷ 6.576𝑒ିଶ 2.019𝑒ିଶ 4.459𝑒ିଷ 
𝑈௖௢௔௥௦௘ 1.511𝑒ିଶ 1.012 1.849𝑒ିଵ 7.819𝑒ିଶ 4.627𝑒ିଵ 5.546𝑒ିଵ 2.034𝑒ିଵ 

oscillatory 
convergence 

       

Table 6:  Spatial discretisation uncertainty using Eça’s method. 

 𝐶ௗതതത 𝐶௟ഥ  𝐶௠തതതത 𝐶ௗ෪ 𝐶௟෩ 𝐶௠෪ St 
𝜙଴ 0.148 –0.278 0.242 0.017 0.125 0.005 0.255 

𝑝௢௕௦௘௥௩௘ௗ 1.000 4.004 3.592 4.499 3.591 4.376 4.316 
fit eqn (17) eqn (18) eqn (18) eqn (18) eqn (18) eqn (18) eqn (18) 
𝑈ଵ 0.020 0.054 0.062 0.018 0.131 0.090 0.025 
𝑈ଶ 0.029 0.039 0.114 0.021 0.176 0.087 0.027 
𝑈ଷ 0.026 0.063 0.123 0.031 0.243 0.136 0.038 
𝑈ସ 0.031 0.110 0.189 0.049 0.366 0.219 0.064 

𝑈ଵ
௠௢ௗ 0.020 0.027 0.033 0.008 0.060 0.042 0.012 

𝑈ଶ
௠௢ௗ 0.029 0.021 0.057 0.010 0.080 0.040 0.012 

𝑈ଷ
௠௢ௗ 0.026 0.032 0.059 0.014 0.109 0.063 0.018 

𝑈ସ
௠௢ௗ 0.031 0.050 0.085 0.021 0.159 0.096 0.029 

weighted        
 

6  CONCLUSIONS 
In this piece of research the application of two different methods for the calculation of the 
discretisation uncertainty to the values obtained by means of 3D LES simulations have 
been presented for a practical case of interest in bridge engineering. The ASME method 
presented two main advantages respect to Eça’s method: (i) it required a lower number of 
simulations and (ii) it has proved to be less conservative in the calculation of the 
uncertainty values. This suggests that the ASME method is more suitable for a wider range 
of practical applications. Moreover, the calculation of the uncertainties of the different 
parameters of interest provides major overall credibility to the obtained results, offering as 
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well a quantifiable method for selecting a mesh with reasonable accuracy and 
computational demands, which could be used in further studies. 
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