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1  INTRODUCTION 
It is important to comprehend rheology of particle suspension to facilitate useful and 
effective applications in many fields. One of the most convenient aspects by using particle 
suspension is its simple relationship between particle concentration and consequent 
apparent viscosity. According to Einstein’s viscosity equation [1], the apparent  
effective viscosity eff can be simply related to the particle concentration  with intrinsic 
viscosity []: 

𝜂 𝜂 1 𝜂 𝜙 , (1) 

where 0 is the viscosity of the solvent. The intrinsic viscosity [] depends on the shape of 
the suspended particles: for the case of spherical particles, [] = 2.0 for two-dimensional 
[2] and [] = 2.5 for three-dimensional [1]. In order to compare contributions of suspended 
particles to the apparent viscosity among suspensions with different solvent, relative 
viscosity eff/0 is sometimes preferably employed: 
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ABSTRACT 
It is important to comprehend rheology of particle suspension to facilitate useful and effective 
applications in many fields. It is well known that relative viscosity for higher concentration becomes 
higher than that form Einstein’s viscosity equation. One of the reasons is interaction between 
suspended particles and suspending fluids. We previously considered the influence of interactions on 
increase in relative viscosity by focusing on the suspended particles’ rotational motions. For higher 
concentrated suspensions, the rotational motions were disturbed because particles were too jammed to 
move freely, especially in rotational direction. Since these rotational motions were strongly related to 
the total macroscopic fluid resistance, the relative viscosity depended on the microscopic gaps 
between the particles. In the meantime, relationships between microstructure, i.e., spatial arrangement 
of the particles, and rheology are still unclear. In this study, therefore, numerical simulations were 
conducted to consider relative and intrinsic viscosities in terms of microstructure of suspensions. The 
results showed that the concentration profile of the particle suspension was almost flat except for near 
the channel wall. Few particles flowed near the wall because repulsive force from the wall increased 
exponentially with approaching the wall. They flowed away from the channel wall. For the higher 
concentrated suspension, on the other hand, particles were too jammed to flow smoothly near the 
channel center. Then some particles were pushed out toward the channel wall against the repulsive 
force. In this case, they flowed near the channel wall as well. Owing to these effects, the 
concentration profile for the concentrated suspension depicted almost flat including near the wall. The 
microstructure for higher concentrated suspension also changed with changes in concentration profile. 
Then the relative and intrinsic viscosities were consequently increased with concentration. The 
intrinsic viscosity was significantly related to the microstructure of the suspension. 
Keywords:  rheology, non-Newtonian property, dilute suspension, microstructure, margination, two-
way coupling simulation. 



1 𝜂 𝜙. (2) 

It is well known that relative viscosity for higher concentration becomes higher than 
that form Einstein’s viscosity equation. One of the reasons is interaction between 
suspended particles and suspending fluids [3]–[6]. We previously considered the influence 
of interactions on increase in relative viscosity by focusing on the suspended particles’ 
rotational motions [7], [8]. For higher concentrated suspensions, the rotational motions 
were disturbed because particles were too jammed to move freely, especially in rotational 
direction. Since these rotational motions were strongly related to the total macroscopic fluid 
resistance [7], the relative viscosity, i.e., pressure loss mainly due to viscous dissipation, 
depended on the microscopic gaps between the particles. 

Recently, effects of non-Newtonian properties of the solvent have also received much 
attention. In a non-Newtonian solvent, since macroscopic velocity profiles strongly depend 
on the shear rate, suspended particles’ behaviors are entirely different from those in a 
Newtonian solvent. For example, Hu et al. [9] and Christ et al. [10] showed the preferable 
radial equilibrium positions for the suspended particles in non-Newtonian fluids. Tanaka et 
al. [11] reported effects of the power-law fluidic properties on the suspension rheology. 
They successfully showed increase in relative and intrinsic viscosities of a suspension 
attributed by the non-Newtonian solvent. These findings are important especially in a field 
of bioengineering. It is reported that blood from patients suffering from cardiovascular 
disease included much more proteins within the plasma [12]. This may lead to higher 
viscosities of blood. They also showed higher death rate related to large amount of proteins 
in plasma. It is important to consider mechanisms of viscosity changes due to interactions 
between suspending fluid and suspended particles. 

In the meantime, relationships between microstructure, i.e., spatial arrangement of the 
particles [13], and rheology are still unclear. Doyeux et al. [6] considered effects of 
particle’s radial position on the total effective viscosity. They showed that when a particle 
approached the channel wall, the effective viscosity increased exponentially. Thus, the 
effective viscosity is not only a function of concentration  but also strongly influenced by 
its microstructure. They also proposed an alternative estimation for effective viscosity 
considering its microstructure instead of Einstein’s equation. Based on their proposal, 
Okamura et al. [14] recently validated total relative viscosity of a suspension by 
considering summation of each particle’s contribution. They showed that relative viscosity 
could be estimated by its microstructure in a limited condition. Although their study was 
still preliminary, viscosity estimation by its microstructure would be a promising approach 
and more considerations should be necessary. It is also expected to reveal the mechanism of 
viscosity changes by considering microstructure of a suspension. Fukui et al. [15] showed 
microstructure changes due to inertial effects of the suspended particles and consequent 
viscosity decrease of suspension. These microstructure changes were considered to be one 
of the major factors in changing macroscopic rheology. On the other hand, since these 
inertial effects generally tended to cause thixotropic behavior, i.e., viscosity decrease, it is 
important to consider microstructure changes resulting in viscosity increase as discussed 
above. In this study, we focus on the microstructure in a pressure-driven suspension flow 
with different concentrations in order to consider mechanism of viscosity increase with 
increasing concentration. We also consider the relationship between microstructure and its 
relative and intrinsic viscosities. 
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2  METHODS 

2.1  Computational models 

We conducted two-dimensional pressure-driven suspension flow simulations by a two-way 
coupling scheme. Fig. 1 shows a schematic view of the simulation model used in this study. 
The cannel width was 2l = 400 m, and the axial length was set 4 times as long as its width. 
A periodic boundary condition considering pressure was applied axial direction to reduce 
computational costs. Suspended particles with a diameter 2r = 20 m were randomly 
distributed as an initial condition. Note that at least 20 m gaps between the particles or 
particle-wall were allowed for the initial position to stabilize the computation. Number of 
particles was set 21 for  = 1.02%, 42 for  = 2.04%, and 84 for  = 4.07%, respectively. 
The simulations were then conducted until physical time t = 8 s, which corresponds to non-
dimensional time of 100. More or less, initial random positions of the particles affect 
particles flow patterns and consequent microstructure [15], these simulations were 
repetitively carried out 40 times for  = 1.02%, and 20 times for  = 2.04 and 4.07%, 
respectively. The spatial resolution was set 1 m for both directions, which has been 
validated by grid independence test [8]. Particle shape was described by virtual flux method 
[16] to satisfy the hydrodynamic boundary conditions on the particle surface in Cartesian 
coordinate system with regular intervals. 
 

 

Figure 1:    Schematic view of a pressure-driven suspension flow model. The channel 
width and length were set 400 m and 1,600 m, respectively. Periodic 
boundary condition was applied in the x direction. Suspended particles with a 
diameter 2r = 20 m were randomly distributed as an initial condition. Number 
of particles was set 21 for  = 1.02%, 42 for  = 2.04%, and 84 for  = 4.07%, 
respectively. 

2.2  Governing equation for suspending fluid 

The governing equation for suspending fluid was regularized lattice Boltzmann equation 
[17], [18], which is a modified form of the original lattice Boltzmann equation in order to 
stabilize the computation. Briefly, distribution function f in the regularized lattice 
Boltzmann equation is written by using up to second-order moments: 
 
 𝑓 𝜔 𝑎 𝑏 𝑒 𝑐 𝑒 𝑒 , (3) 
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where  is the weight factor,  is the direction of the discrete velocity vector e, and a0, bi, 
cij are the parameters that satisfy the following relationships: 
 
 ∑ 𝑓 𝜌, (4) 
 
 ∑ 𝑒 𝑓 𝜌𝑢 , (5) 
 

 ∑ 𝑒 𝑒 𝑓 𝜌𝛿 𝜌𝑢 𝑢 𝛱 , (6) 

 
where ij

neq is the nonequilibrium part of the stress tensor. The distribution function fa in 
eqn (3) is then, 
 

 𝑓 𝜔 𝜌 1 𝛿 𝛱 . (7) 

 
The first term is equivalent to Maxwell equilibrium distribution function feq with low 
Mach number approximation. When the distribution function f can be expanded by a 
power series of Kundsen number  around the equilibrium distribution function feq, the 
distribution function f is written as 
 
 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 ⋯, (8) 
 
where fn corresponds to of the order of (n), and f0 is equal to feq. Therefore, the second 
term of eqn (7) can be substituted for f1, and the time evolution equation for the 
regularized lattice Boltzmann equation is 
 

 𝑓 𝑡 ∆𝑡, 𝒙 𝒆 ∆𝑡 𝑓 𝑡, 𝒙 1 𝑓 𝑡, 𝒙 , (9) 

 
where  is the relaxation time. When Navier–Stokes equations are derived from lattice 
Boltzmann equation through Chapman–Enskog expansion procedure, the relaxation time  
is defined as follows in the incompressible limit [19], 
 

 𝜏
∆

∆
, (10) 

 
where  is the kinematic viscosity. The relaxation time  = 0.74 for all our computations. 

2.3  Governing equations for suspended particles 

The suspended particles used in this study were assumed to be rigid, spherical, chemically 
stable, and non-Brownian. Their movements were simply described by Newton’s second 
law of motion and equation of angular motion: 
 

 𝑭 𝜌
𝒙

, (11) 

 

 𝑇 𝐼 , (12) 
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where Fp is the external hydrodynamic force vector acting on the particle,  is the density, 
xp is the position vector, Tp is the torque, I is the moment of inertia, and p is the angle of 
the particle. Note that both densities of suspended particles and suspending fluid were 
assumed to be equivalent for neutral buoyancy. The external force vector Fp and torque Tp 
acting on the particles were discretized by a third-order Adams–Bashforth method and 
solved numerically by a two-way coupling scheme [7]: 
 

 𝒙 𝒙 ∆𝑡
𝑭 𝑭 𝑭

, (13) 

 

 𝒙 𝒙 ∆𝑡
𝒙 𝒙 𝒙

, (14) 

 

 𝜃 𝜃 ∆𝑡 , (15) 

 

 𝜃 𝜃 ∆𝑡 . (16) 

 

3  RESULTS AND DISCUSSION 
The macroscopic axial velocity and microscopic particles behavior at t = 8 s are depicted in 
Fig. 2. The suspended particles are shown to flow randomly in a channel. Note that since 
sufficient number of grids was allocated in the computational domain, collisions between 
particles or particle and channel wall were not observed. At least 2 or 3 grids always 
remained between the particles during the simulations. Since inertial effects were negligible 
due to low Reynolds number condition, the particles did not migrate in the width direction, 
i.e., the particles flowed almost along the macroscopic streamline. The particles, however, 
did not flow very near the channel wall. The particles apparently flowed avoiding a certain 
peripheral layer near the channel wall in Fig. 2(a) and 2(b). This is because repulsive force 
from the wall increased exponentially with approaching the wall [6], [14]. Owing to these 
effects, the particles did not approach the wall and some layers without particles existed 
near the wall. However, for the case  = 4.07%, particles flowed within these regions too as 
shown in Fig. 2(c). This is partly because when particles are getting jammed with 
increasing concentration, some particles are pushed away toward the peripheral layers near 
the wall. These phenomena are sometimes observed in microcirculation termed 
“margination”. Deformable red blood cells often exhibit axial migration, and leukocytes 
appear to flow primarily in the peripheral layer to the contrary, which is the first step in the 
firm adhesion to the endothelium [20]. In this study, the suspended particles were rigid and 
their shape and size were all the same. Judging from our results, it might be stated that 
margination occurs depending on concentration of the particles, when the particles are all 
rigid and spherical. 

To consider the velocity profiles composed of the particles, the y-axis position and axial 
velocity of the particles were plotted in Fig. 3. The solid line indicates that from the 
Newtonian fluid. Our numerical data were in good agreement with that from the Newtonian 
parabolic fluid. This is because particles flowed in accordance with the streamlines of the 
macroscopic flows due to sufficiently weak inertial forces. The particles were scattered 
almost uniformly along the width (y-axis) direction, except for the peripheral layers near 
the wall (y/l = 1.0) as mentioned above. However, some particles were pushed away 
toward the wall side and flowed within the peripheral layers for the case  = 4.07%. 
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Figure 2:    Snapshots of pressure-driven suspension flows at time t = 8 s. (a) concentration 
 = 1.02%; (b) concentration  = 2.04%; and (c) concentration  = 4.07%, 
respectively. 

 

Figure 3:    Axial velocity profile composed of the suspended particles. The solid line 
indicates that from the Newtonian fluid: (a) concentration  = 1.02%; (b) 
concentration  = 2.04%; and (c) concentration  = 4.07%, respectively. 
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     Number of particles versus y-axis position was obtained as a function of probability 
density function (PDF) to consider their dispersed states. Relationship between PDF and y-
axis position is also useful to consider its microstructure, i.e., spatial arrangement of the 
suspended particles. In this study, y-axis position was divided into 20 segments as shown in 
Fig. 4. Therefore, when the particles are homogeneously dispersed, the PDF value 
corresponds to 1/20 = 0.05 as denoted by solid line in Fig. 4. Note that the value of 0.05 
also corresponds to the confinement, i.e., ratio of particle size to the channel width. The 
data are plotted together with the standard error (SE) of the mean. Each SE was sufficiently 
small, which indicates number of trials in order to exclude initial position effects would be 
plenty. It was found that the PDF values were around 0.05 with some variations except for 
the peripheral layers (y/l = 1.0), indicating the particles flowed homogeneously and were 
dispersed uniformly in the y-axis direction. This is because inertial effects of the particles 
were negligible for low Reynolds number condition as we discussed in previous studies [8], 
[15], [21]. It is worth mentioning that the values of PDF were almost zero, i.e., no particles 
were observed, in the peripheral layers for the case  = 1.02 and 2.04% due to strong 
repulsive forces from the channel wall. For the case  = 4.07%, on the other hand, they 
were more flat around 0.05 including the peripheral layers as discussed above. Fig. 4 
clearly shows differences in the dispersed states of the particles due to margination. 
Accordingly, microstructure of suspension can be easily visualized, compared and 
considered by using PDF. 
 

 

Figure 4:    Relationship between probability density function (PDF) and normalized y-axis 
position. The data are plotted together with 1 SE. The solid line denotes 
homogeneously dispersed state in the y axial direction. 

Relative viscosity for each concentration is shown in Fig. 5. Data plotted are mean 1 
standard error (SE). The error bars were sufficiently small, which indicates effects of initial 
particles’ positions were properly removed. The solid line denotes that form Einstein’s 
viscosity equation [2]. Our results were in good agreement with the theoretical values for 
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lower concentration conditions, which indicates our computational conditions satisfied 
some assumptions in Einstein’s equation, i.e., sufficiently small particles, negligibly weak 
inertial forces, homogeneously dispersed state, and low concentration. On the other hand, 
our data for  = 4.07% significantly differed from that by Einstein. Our data corresponded 
to that for  = 6.8% by Einstein’s equation, which is 1.7 times as high as the actual 
concentration. We previously considered one of the reasons for nonlinearly enhanced 
relative viscosity for higher concentration suspensions from the viewpoint of rotational 
motions of the suspended particles due to hydrodynamic interactions [7]. In addition to this 
consideration, present study takes account of microstructure of the suspended particles. For 
higher concentration suspensions, particles flowed within the peripheral layers due to 
margination. When the macroscopic total effective viscosity can be discussed by 
summation of each microscopic particle’s contribution to the effective viscosity, particles 
near the channel wall yield major and significant contributions [6], [14]. Then the intrinsic 
viscosity, which corresponds to a ratio of viscosity to concentration, was consequently 
increased with concentration. Microstructure using PDF would be a promising index to 
consider rheological properties of a suspension. 
 

 

Figure 5:    Relationship between relative viscosity and concentration of a particle 
suspension. The data are plotted together with 1 SE. The solid line denotes 
that from Einstein’s viscosity equation. 

4  CONCLUSIONS 
Two-dimensional pressure-driven suspension flow simulations were conducted by a two-
way coupling scheme in order to consider relationship between microstructure and 
consequent relative and intrinsic viscosities. As a result, for the case  = 4.07%, the 
particles were dispersed homogeneously including peripheral layers due to margination. 
Then the relative and intrinsic viscosities were consequently enhanced and exceeded those 
from Einstein’s estimation. Since the intrinsic viscosity was significantly related to the 
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microstructure of the suspension, microstructure using PDF would be a promising index to 
consider rheological properties of a suspension. 
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