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ABSTRACT
Over the past two decades, several researchers have presented experimental data from pressure-driven
water flow through carbon nanotubes quoting mass flow rates which are four to five orders of magnitude
higher than those predicted by the Navier–Stokes equations with no-slip condition. The current work
examines the development of an OpenFOAM solver for creeping flows that better accounts for some
micro- and nano-scale diffusion processes. It is based on the observation that a change of velocity
variable within the classical Navier–Stokes equations leads to a form of flow model with additional
diffusive terms which become apparent at the micro- and nano-scale. Numerical simulations from
the new solver compare well with associated analytical solutions that match the experimental flow
enhancement observed in cylindrical tubes. This lays the foundations for further investigations of liquid
flows in more complex nano-sized geometries, such as those obtained from pore-scale imaging.
Keywords: micro- and nanofluidics, continuum models, mass/volume diffusion, Navier–Stokes
equations.

1 INTRODUCTION
Water transport in Carbon nanotubes (CNTs) has been a subject of intense research over the
past two decades, predominantly because of its potential applications in technologies such as
molecular level drug delivery and nanofiltration. The first major experimental studies of liquid
flow through CNT membranes were carried out by Majumder et al. [1] and Holt et al. [2],
on 7 nm diameter and 1.3–2 nm diameter CNTs respectively. Both investigations suggested
extremely large water flow rate enhancements when compared to predictions based on the
no-slip Haagen-Poiseuille flow law. In a repeat of the experiment, Majumder et al. [3] were
later able to confirm their original findings of enhancement factors on the order of 103–104.
In contrast to this, Qin et al. [4] reported flow enhancements of order 102–103 in 0.81–1.59
nm diameter CNTs, while the results by Du et al. [5] pointed to an enhancement of up to
order 105 in 10 nm diameter channels. With the aim of expanding the data-set to include
also wider tube diameters, Whitby et al. [6] investigated liquid flow through CNTs of 44 nm
diameter, calculating only a 20–37 fold enhancement over no-slip Hagen-Poiseuille flow. For
200–300 nm diameter tubes, Sinha et al. [7] found no significant deviation, suggesting that
flow enhancement effects diminish with increasing diameter.

A wide variety of flow enhancement data can also be found in the literature on molecular
dynamics simulations of water flow through CNTs. For instance, Joseph and Aluru [8]
measured an enhancement factor of 2052 in 2.17 nm diameter channels, while Thomas
and McGaughey [9] found enhancements of 144–176 in 1.66–4.99 nm channels. Walther et
al. [10] even report enhancements as low as 32, 25, 22 in simulations of 2.71, 4.07, 5.42 nm
diameter tubes. Even if the spread in these data is large, the molecular dynamics simulations
are consistent in the sense that none of them confirms the extremely high enhancement
values found in some of the experimental studies. In fact, by employing the Young–Laplace
equation, Walther et al. [10] study the water entry and filling stages of a CNT and derive a
maximum attainable flow enhancement factor of 253. A similar upper bound is also argued
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for by Sisan and Lichter [11] using continuum methods. They show that frictional entrance
and exit losses should not be neglected even for channels of small aspect ratio, thus limiting
the flow rate.

It is common practice to quantify the flow enhancement using the slip velocity, which is
a correction of the no-slip condition by the introduction of a constant velocity at the wall,
leading to a slip-modified Haagen–Poiseuille mass flow rate. In experiments, the slip velocity
is then found retrospectively by substituting the (enhanced) flow rate into this equation. A
great deal of research has gone into effectively predicting the slip velocity a priori for a given
fluid-solid combination. Using molecular dynamics simulations, this is often done by analysis
of the parabolic velocity profile (see e.g. [9], [12]) or by use of the Navier friction coefficient
(see [13], [14]). A different approach was suggested by Myers [15]. Leaving intact the no-slip
condition, he modeled the flow enhancement by incorporating a region of reduced viscosity
near the wall.

In Stamatiou et al. [16], a novel modelling approach was introduced in which the
flow enhancement is caused by a diffusion mechanism that only becomes apparent at
the nanoscale. A unifying recasting methodology was proposed by which a new class of
continuum models termed Recast Navier–Stokes equations (RNS), can be directly derived
from the Navier–Stokes equations [17], [18]. The idea is based on transforming the velocity
vector field within the classical equations in a way that depends on the driving mechanism of
the flow (for liquid flow in CNTs, this is the pressure gradient). The mass flow rate derived
from this model as compared with experimental data showed reasonable agreement [16].

The objective of the current work is to present and validate a numerical implementation
of the Recast Navier–Stokes equations in a new OpenFOAM solver (rnsLiquidFoam). For
creeping flows in cylindrical tubes of small aspect ratio, a perturbation analysis yielding
analytical expressions for the pressure and velocity fields are obtained [16]. These solutions
are reviewed and used to validate the solver. The new solver can then be applied to simulate
flows in complex geometries such as those obtained from pore-scale imaging techniques.

In Sections 2 and 3, the proposed equations for pressure-driven liquid flows and their
numerical implementations are presented. In Sections 4 and 5, the perturbation solutions are
reviewed and the numerical solutions are compared against them.

2 RECAST NAVIER–STOKES EQUATIONS
For a fluid of constant mass density (ρ), the Navier–Stokes mass and momentum conservation
laws may be written as follows:

∇ ·Um = 0, (1)

∂
∂t (ρUm) +∇ · (ρUm ⊗Um) +∇ ·

[
pI + Π(NS)

]
= 0. (2)

Here, Π(NS) is the Newtonian stress tensor which is given in terms of the fluid’s dynamic
viscosity (µ) as:

Π(NS) = −2µ
[

1
2

(
∇Um + (∇Um)T

)
− 1

3
I (∇ ·Um)

]
= −2µ

◦
∇Um . (3)

The unknown velocity field Um = Um(x, t) is that of the conventional mean mass velocity. If
an externally applied pressure gradient is the principal driving mechanism of the flow, the new
theory presented in Reddy et al. [17] and Dadzie and Reddy [18] assumes that the classical
mass velocity can be written in terms of a new pressure diffusion velocity Up as:

Um = Up − κp∇ ln p = Up − κp
∇p
p
. (4)
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The second term on the right hand side represents a mass diffusion mechanism driven by the
pressure gradient. This distinction between Um and Up is analogous to the idea of a volume
velocity in gas [19]–[21]. The molecular pressure diffusivity coefficient κp is assumed to be
of the form:

κp = α∗µ

ρ
= α∗ν, (5)

where α∗ is a dimensionless parameter and ν the fluid’s kinematic viscosity. Substituting eqn
(4) into the Navier–Stokes eqns (1)–(2) and re-arranging terms leads to the recast Navier–
Stokes (RNS) equations for mass and momentum:

∇ ·Up = ∇ · (κp∇ ln p) , (6)

∂

∂t
(ρUp − κpρ∇ ln p) +∇ · (ρUp ⊗Up) = ∇ ·T(RNS), (7)

with the tensor T(RNS) on the right-hand side of this equation given by,

T(RNS) =
(
−p− 2

3
µκp

p2
|∇p|2 +

2
3
µκp

p
∇2p

)
I +

κp

p2
(2µ− ρκp) ∇p⊗∇p+ 2µD (Up)

− 2
3
µ (∇ ·Up) I− 2

µκp

p
∇ (∇p) +

ρκp

p
Up ⊗∇p+

ρκp

p
∇p⊗Up. (8)

Here, D (Up) denotes the symmetric part of the velocity gradient. A parallel can be drawn
between the structure of tensor T(RNS) and Korteweg’s stress tensor T [22]. Korteweg
augmented the Newtonian stress tensor with the dyadic product∇ρ⊗∇ρ to represent forces
experienced by fluids during phase transitions. His complete tensor may be written as in [23]:

T =
(
−p+ α0|∇ρ|2 + α1∇2ρ

)
I + β∇ρ⊗∇ρ+ 2µD (v)− λ (∇ · v) I, (9)

where the material coefficients α0, α1, β, µ, λ may depend on ρ as well. On comparing eqn
(9) with eqn (8), it is seen that all terms involved in the structure of the Korteweg stress tensor
are found in the recast Navier–Stokes tensor, but written with p rather than ρ.

3 THE NEW OPENFOAM IMPLEMENTATION
The standard installation of OpenFOAM [24] comes with at least five incompressible solvers
most of which are based on the PISO algorithm. In the incompressible Navier–Stokes
equations, mass balance appears as a kinematic constraint on the velocity field (eqn (1)).
There is no independent equation for the pressure, which presents a problem for the numerical
computation of the solution. Solvers of the PISO family address this issue by constructing a
Poisson equation for the pressure to enforce mass conservation, using one or more correction
loops at each time-step [25]. This makes the solution of pressure expensive.

In the Recast Navier–Stokes setting, the pressure appears explicitly in the mass balance
equation (eqn (6)). Instead of modifying one of the existing incompressible solvers, a
simple sequential algorithm is proposed. This is shown in the source code of the new solver
rnsLiquidFlow in Listing 1 below. The following steps may be identified here:

1. Define and compute the new diffusive term Jp and the surface flux of Jp (lines 1–3).
2. Define the part of the momentum equation involving the velocity Up (lines 6–12).

Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow  79

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 132, © 2021 WIT Press



3. Solve the above momentum equation for velocity field using the pressure field from the
previous time step (lines 14–19).

4. Define equation for pressure field (lines 21–24).
5. Solve for the pressure field using the previously calculated solution for velocity field

(line 26).
6. Repeat the steps 1–5 for next time step.

1 l n p = l o g ( p∗ d i m e n s i o n e d S c a l a r ( ” one ” , d imDens i ty / d i m P r e s s u r e , 1 ) ) ;
2 Jp = −a l p h a ∗nu∗ f v c : : g r a d ( l n p ) ;
3 p h i J p = f v c : : f l u x ( Jp ) ;
4

5

6 f v V e c t o r M a t r i x UEqn
7 (
8 fvm : : d d t ( Up )
9 + fvm : : d i v ( phi , Up )

10 − fvm : : l a p l a c i a n ( nu , Up )
11 + fvm : : d i v ( ph i Jp , Up )
12 ) ;
13

14 s o l v e ( UEqn == − f v c : : g r a d ( p )
15 − f v c : : d d t ( Jp )
16 + f v c : : d i v ( phi , Jp )
17 + f v c : : d i v ( ph i Jp , Jp )
18 + f v c : : l a p l a c i a n ( nu , Jp )
19 ) ;
20

21 f v S c a l a r M a t r i x pEqn
22 (
23 fvm : : l a p l a c i a n ( 1 . 0 / p , p )
24 ) ;
25

26 s o l v e ( pEqn == f v c : : d i v ( Up ) / ( a l p h a ∗nu ) ) ;
27 \

Listing 1: Excerpt of source code in rnsLiquidFoam.C

4 CREEPING FLOW IN CYLINDRICAL NANO-CHANNELS

4.1 Perturbation solutions

The tube-like channels embedded in a CNT membrane are characterised by a very small
diameter D compared to their length L. It is therefore reasonable to seek a perturbation
solution of eqns (6)–(7) in the channel aspect ratio ε = D/L, employing a cylindrical polar
coordinate system (r, θ, z) in which the components of the pressure velocity are denoted Upr ,
Upθ and Upz . Fig. 1 shows a schematic of the fluid flow,

which is assumed to be axisymmetric and with Upθ = 0. The flow is driven by a pressure
field p, such that p (r, 0) = Pin and p (r, L) = Pout for all 0 ≤ r ≤ R, where Pin > Pout

are the constant inlet and outlet pressures. On the channel wall, the tangential component of
the velocity is assumed to satisfy the no-slip condition, i.e. Upz (R, z) = 0, so that any mass
flow tangent to the wall must be purely diffusive. The radial component Upz (R, z) on the
other hand is related to the diffusive mechanism in such a way that no mass passes through
the wall:

Umr (R, z) = Upr (R, z)− κp
∂ ln p
∂r

∣∣∣
(R,z)

= 0. (10)
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Figure 1: Schematic of CNT membrane and cylindrical geometry.

Eqn (10) suggests that some arbitrariness is left unless the gradient of the pressure at the
wall is specified and this will be commented on in the solver validation section below.

In Table 1, dimensionless variables are defined in which the suggested perturbation
solution is written as:

p̃(r̃, z̃) = p̃0(r̃, z̃) + εp̃1(r̃, z̃) + ε2p̃2(r̃, z̃) + · · · , (11)

Ũpr(r̃, z̃) = Ũpr,0(r̃, z̃) + εŨpr,1(r̃, z̃) + ε2Ũpr,2(r̃, z̃) + · · · , (12)

Ũpz(r̃, z̃) = Ũpz,0(r̃, z̃) + εŨpz,1(r̃, z̃) + ε2Ũpz,2(r̃, z̃) + · · · . (13)

For the dimensional analysis of different flow regimes the characteristic velocity magnitude
|U|c is related to the characteristic pressure Pc via:

|U|c =
PcD

2

µL
=
Pc εH

µ
. (14)

The Reynolds’ number Rep is calculated with respect to the pressure velocity Up and can
now be expressed as:

Rep =
|U|c ρD

µ
=
Pc ρ εD

2

µ2
. (15)

A Nusselt number Nu may be defined to compare the diffusive and advective transport
mechanisms. With κp defined by eqn (5), this is directly related to the Reynolds’ number:

Nu =
κp

UH
=

α∗

Rep
. (16)

Table 1: Definition of dimensionless variables.

Dimensional variable z r Up,z Up,r p

Scaling factor L D |U |c |U |c Pc

Dimensionless variable z̃ =
z

L
r̃ =

r

D
Ũp,z =

Up,z

|U |c
Ũp,r =

Up,r

|U |c
p̃ =

p

Pc
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4.2 Flow regime with Rep = O(ε2) and α∗ = O(1)

Table 2 in Section 5 lists a set of parameters typical for flow experiments carried out in
nano-diameter channels of small aspect ratio. Based on these values, the dimensionless
numbers ε = 1× 10−3 and Rep = 1× 10−5 are found. The low Reynolds’ number is typical
of creeping flows so that inertial terms can be neglected in the momentum equation. A
rigorous perturbation analysis on the non-dimensionalised equations with Rep = O(ε2) and
α∗ = O(1) reveals that the first two pressure terms in eqn (11) are independent of the radial
coordinate r (see [16] for details). In other words, p̃0 = p̃0(z) and p̃1 = p̃1(z). Using this and
equating the O(1) terms in the mass balance equation results in:

p̃2
0

1
r̃

∂
(
r̃ Ũpr,0

)
∂r̃

=
α∗

Rep

[
ε2p̃0

d2p0

dz̃2
− ε2

(
dp̃0

dz̃

)2

+p̃0
1
r̃

∂

∂r̃

(
r̃
∂p̃2

∂r̃

)]
. (17)

It should be noted here that, within the perturbation analysis, the O(1) term of the radial
component of the mass velocity (see eqn (10)) is:

p̃0Ũmr,0 = p̃0Ũpr,0 −
α∗

Rep

∂p̃2

∂r̃
. (18)

The pressure term p̃0(z̃) can be found directly by integrating eqn (17) and using the boundary
condition Ũmr,0 = 0 at the wall. This leads to the following ordinary differential equation:

p̃0
d2p̃0

dz̃2
−
(
dp̃0

dz̃

)2

= 0 (19)

Introducing the ratio P = Pin/Pout, the dimensional form of the solution is:

p0(z) = Pin exp
(
− ln(P)z

L

)
⇐⇒ z

L
lnP + ln

p0(z)
Pin

= 0. (20)

Furthermore, equating the O(1) terms in the z-momentum equation yields:

∂2Ũpz,0

∂r̃2
+

1
r̃

∂Ũpz,0

∂r̃
=
dp̃0

dz̃
. (21)

With application of the no-slip condition on Ũpz,0, eqn (21) results in a parabolic velocity
profile, the dimensional form of which is:

Upz,0(r, z) =
1

4µ
(
r2 −R2

) dp0

dz
. (22)

It should be emphasized that, in the high Nusselt number flow regime considered here,
the stream-wise velocity term Upz,0 does not feature in eqn (17). The diffusive transport
dominates and determines the pressure distribution with help of the no-penetration condition
at the wall.
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4.3 Flow regime with Rep = O(ε2) and α∗ = O(ε)

In Stamatiou et al. [16], the case with Rep = O(ε) and α∗ = O(1) was investigated.
However, closer inspection reveals that the same terms dominate the equations for the
flow regime in which Rep = O(ε2) and α∗ = O(ε). This is because the Nusselt number
Nu = α∗/Rep is the same for both these regimes and the terms proportional to the Reynolds
number are negligible. In comparison to the case examined in Section 4.2, there is one
significant change: while the z-momentum equation is again given by eqn (21), the mass
balance equation now exhibits an extra term coupling the two equations together:

p̃2
0

∂Ũpz,0

∂z̃
+ p̃2

0

1
r̃

∂
(
r̃ Ũpr,0

)
∂r̃

=
α∗

Rep

[
ε2p̃0

d2p0

dz̃2
− ε2

(
dp̃0

dz̃

)2

+p̃0
1
r̃

∂

∂r̃

(
r̃
∂p̃2

∂r̃

)]
.

(23)
The pressure term p̃0(z̃) is now found by substituting the dimensionless form of eqn (22)
in eqn (23), integrating and using Ũmr,0 = 0 at the wall. The resulting ordinary differential
equation for p̃0(z̃) now becomes:

d2p̃0

dz̃2
+

32α∗ε

Rep

d2 ln p̃0

dz̃2
= 0. (24)

This equation only admits an implicit solution, the dimensional form of which can be written
as follows:

p0(z) +
8µκp

R2

[
z

L
lnP + ln

p0(z)
Pin

]
= Pin +

∆P
L
z, (25)

where P = Pin/Pout as before and ∆P = Pout − Pin is the pressure drop. Written in this
form, it can be seen that the pressure distribution for the present flow regime is a correction
of eqn (20) by a linear pressure drop. Eqn (20) is approximated for large values of µκp/R

2,
while the Haagen-Poiseuille flow law is recovered for small values of µκp/R

2. This is also
seen when considering the mass flow rate expression:

ṀRNS =
πρR4

8µL

[
∆P +

8µκp

R2
ln (P)

]
= ṀHP (1 + ERNS) , (26)

where ṀHP is the no-slip Haagen-Poiseuille mass flow rate, i.e.

ṀHP =
πρR4∆P

8µL
, (27)

and ERNS is the flow enhancement factor defined as,

ERNS =
ṀRNS − ṀHP

ṀHP

=
8µκp ln (P)
R2∆P

. (28)

5 SOLVER VALIDATION

5.1 Computational mesh and solver settings

In this section it is verified that the rnsLiquidFoam solver agrees with the previously found
analytical expressions for flows in cylindrical tubes. The axial symmetry of the problem
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permits the solution of the equations on a small wedge instead of the entire cylinder. Fig. 2
shows the computational mesh for a wedge angle of 5◦ with 100 uniformly spaced cells
in the z-direction and 20 cells in the y-direction with an expansion ratio of 0.1, so that the
mesh becomes more refined in the near-wall region. The small angle allows the wall to be
approximated by a flat boundary patch with outward normal n̂ in the y-direction. On this
boundary, the conditions Up = (0, 0, 0) and ∇p · n̂ = 0 (zeroGradient) are adopted,
which is stricter than the boundary condition used to derive the first order perturbation
solutions in Section 4 (see eqn (10)). The angled top and bottom planes of the mesh are
equipped with the wedge condition for rotationally symmetric cases. Table 2 summarises the
other physical parameters used for the simulation of water flow in a CNT of 10 nm diameter
and 10 µm length driven by a pressure difference of 1 bar.

5.2 Comparison with analytical solutions

In Section 4.3 the influence of the diffusivity parameter α∗ on the pressure distribution
was highlighted. This is illustrated in Fig. 3, where eqn (25) is plotted for α∗ = 1 and
α∗ = 0.001, representing extremal values for a large range of possible diffusivities κp. The
same curves are also computed with rnsLiquidFoam, sampling along the z-axis. Excellent
agreement can be seen in both cases. On the one hand, the case with α∗ = 1 corresponds
to a flow process dominated by the diffusive transport mechanism, the convective transport
being negligible. On the other hand, the case with α∗ = 0.001 leads to both mechanisms
contributing equally. As α decreases, the pressure distribution is seen to approach the linear
pressure drop of classical Poiseuille flow. For illustrative purposes, the value α∗ = 0.005 is
used in all subsequent plots, which represents a case where diffusive transport is of the same

Table 2: Parameters for simulation of water flow in CNTs.

Parameter L (m) D (m) µ (kg m−1s−1) ρ (kg m−3) Pin (Pa) Pout (Pa)

Value 1× 10−5 1× 10−8 1× 10−3 1× 103 2× 105 1× 105

Figure 2: Computational mesh for a wedge of 5◦.
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Figure 3: Pressure distribution along the tube.
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Figure 4: Stream-wise velocity and diffusion components on two axes.

order but clearly higher than convective transport. Fig. 4(a) shows the variation of stream-
wise components Upz and Jpz on the z-axis.
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Figure 5: Mass flow rate calculation on two grids.

Both are non-constant, owing to the choice of α∗ (not too ‘small’ or ‘large’). Fig. 4(b)
shows the same components plotted against the radial distance from the z-axis at the centre of
the channel (z = 5× 10−9m). The numerical solution of Upz agrees well with the parabolic
profile Upz,0 (eqn (22)) and Jpz is constant. The mass velocity profile Umz is therefore
also parabolic and indistinguishable from that obtained using a velocity slip condition in
the classical Navier–Stokes equations.

Fig. 5 shows the calculation of the mass flow rate through six representative cross sections
of the entire tube. This was initially done using a 100× 100 grid (green squares) and then
repeated on a 200× 200 (blue triangles) refined grid. The mass flow rate is constant along
the channel in both numerical calculations and the solution appears to converge to eqn (26).
A deviation with respect to this analytical expression must persist also because the circular
tube wall has been approximated by a polygonal wall.

Fig. 6 shows the flow enhancement for a selection of experimental studies and molecular
dynamics simulations of water flow in CNTs, which differ both in channel dimensions and
in imposed pressure differences. Eqn (28) is plotted (orange triangles connected by straight
line segments) using the dimensions and pressures quoted in each individual investigation. A
geometry-dependent form of α∗ has been employed here, given by α∗ = 0.003× L/D [16].
The corresponding simulation results from the new solver, rnsLiquidFoam, are shown by the
blue open circles connected with dashed straight line segments.

It should be noted that molecular dynamics simulations have revealed that the radial
pressure distribution in nano-sized tubes is not constant, dropping off sharply near the
boundaries [10]. Similarly, the viscosity is slightly reduced in this zone, which has been
incorporated in previous modelling attempts [15]. The kinematic viscosity ν = µ/ρ enters as
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Figure 6: Comparison between numerically simulated, experimental and analytical flow rate
enhancement.

a constant in the new model and considering its radial variation could lead to an improved
agreement with the data. Also the inclusion of end-effects should be examined, as suggested
in Sisan and Lichter [11].

6 CONCLUSIONS
This paper has explored the numerical implementation in OpenFOAM of a Recast Navier–
Stokes equations for pressure-driven liquid flows. The explicit appearance of the pressure
in the mass balance equation suggests a simplified numerical solution process compared
to that of the typical incompressible Navier–Stokes equations where mass balance must be
enforced by a Poisson equation for the pressure and several correction steps. For liquid flow
in CNTs, perturbation solutions in the small channel aspect ratio were reviewed and used
to test convergence of the new solver. Very good agreement was obtained for the pressure
distribution and velocity profiles. The calculation of the mass flow rate showed a small
deviation from the analytical expression, but appeared to converge to it upon grid-refinement.
We also showed that the solver computes the correct mass flow rates for the different channel
sizes and pressure differences used in experimental and molecular dynamics studies.
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