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ABSTRACT 
In this work, a novel homotopy analysis method for the solution of two-fluid models is presented. A 
fully developed bubbly through a pipe is considered. Different physical and mathematical properties of 
the two-fluid model were identified. The problem was solved in the central region of the pipe where 
the wall forces were neglected, which implies that void fractions and velocity profiles are not affected 
by the wall. The system of equations was reduced to a single equation without parameters with an 
intrinsic length scale L. Away from the wall of the pipe, the flat void fraction depends on the applied 
pressure gradient, the density of different phases and gravity. It was also found that the effective specific 
weight of the fluid column was cancelled by the pressure gradient. 
Keywords:  two-phase flow, laminar flow, bubbly flow, two-fluid model, fully developed flow. 

1  INTRODUCTION 
For the simulation of two-phase flows, the two-fluid model proposed by Ishii [1] is widely 
used. This model is based on the time averaging of two-phase field equations. The averaging 
process used in Ishii model needs to be accompanied with several closure approximations, 
which lack practical understanding. For example, lift term that models transversal force 
influencing particles or bubbles in a velocity field is not completely understood. In the current 
work, we analyse the two-fluid model by considering a fully developed bubbly flow in a 
circular pipe. Our main objective is to look into the generic properties of the model. 
     We first recall the two-fluid model in brief, with algebraic manipulations of the equations. 
The solution of the system is first provided away from the wall which follows the solution of 
the complete system. 

2  MATHEMATICAL FORMULATION 
We consider the mass and momentum conservation equations with no temperature effects 
similar to Drew and Passman [2], assumption. 

డሺఢೖఘೖሻ

డ௧
൅ ∇. ሺ𝜖௞𝜌௞𝑣௞ሬሬሬሬ⃗ ሻ ൌ 0, (1)

𝜕ሺ𝜖௞𝜌௞𝑣௞ሬሬሬሬ⃗ ሻ

𝜕𝑡
൅ ∇. ሺ𝜖௞𝜌௞𝑣௞ሬሬሬሬ⃗ 𝑣௞ሬሬሬሬ⃗ ሻ ൌ ∇. ሾ𝜖௞ሺ𝑇௞ ൅ 𝜏௞

ோ௘ሻሿ ൅ 𝜖௞𝜌௞𝑔⃗ ൅ 𝑀௞, (2)

in which k is a phase (L for liquid, G for gas), 𝜖௞ is the volumetric fraction of phase k, kv


 is 

the corresponding velocity, 𝜌௞ is the density, 𝑇௞ is the stress tensor, defined as 

𝑇௞ ൌ െ𝑝௞𝐼 ൅ 𝜇௞ሾ∇𝑣௞ሬሬሬሬ⃗ ൅ ሺ∇𝑣௞ሬሬሬሬ⃗ ሻ்ሿ, (3)

where 𝑝௞  is the pressure, and 𝜇௞  is the viscosity 𝜏௞
ோ௘  is the Reynolds like stress due to 

statistical fluctuations, modelled by Nigmatulin [3] 
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𝜏௞
ோ௘ ൌ െ𝜖ீ𝜌௅ሾ𝐴|𝑣ீሬሬሬሬ⃗ െ 𝑣௅ሬሬሬሬ⃗ |ଶ𝐼 ൅ 𝐵ሺ𝑣ீሬሬሬሬ⃗ െ 𝑣௅ሬሬሬሬ⃗ ሻሺ𝑣ீሬሬሬሬ⃗ െ 𝑣௅ሬሬሬሬ⃗ ሻሿ, (4)

where values for A and B are 
ଷ

ଶ଴
 and 

ଵ

ଶ଴
, respectively. Assume v -v = vG L r

  
 and define 

v =|v |rr


. In eqn (2), 𝑀௞ represents the interfacial momentum exchange, which relates to the 

actual force between phases ሺ𝑀௞
ᇱ ሻ according to 

𝑀௞ ൌ 𝑝௞௜∇𝜖௞ െ 𝜏௞௜. ∇𝜖௞ ൅ 𝑀௞
ᇱ , (5)

where values at the interphase are represented by subscript i. Different models exist for ,kM  

in particular for the liquid phase (k = L) Antal et al. [4] used 

𝑀௅ ൌ 𝑝௅௜∇𝜖௅ െ 𝜇௅ሺ∇𝑣௅ ൅ ∇𝑣௅
்ሻ ൅ 𝜌௅൫𝐴|𝑣⃗௥|ଶ𝐼 ൅ 𝐵ሺ𝑣⃗௥⨂𝑣⃗௥ሻ൯ ൅ 𝑀௅

ᇱ , (6)

whereas on the other hand Drew and Passman [2], used 

𝑀௅ ൌ 𝑝௅௜∇𝜖௅ െ ൣ𝜌௅൫𝑎𝑏|𝑣⃗௥|ଶ𝐼 ൅ 𝑎ଶሺ𝑣⃗௥. 𝑣⃗௥ሻ൯൧∇𝜖௅ െ 𝜌௅𝜖௅∇. ሺ𝑣⃗௥⨂𝑣⃗௥ሻ ൅ 𝑀௅
ᇱ , (7)

where 𝑎 ൌ െ
ଽ

ଶ଴
and 𝑏 ൌ

ଷ

ଶ଴
. The pressure at the interphase ሺ𝑝௅௜ሻ can be derived from the 

expression by Stuhmiller [5], 

𝑝௅ି𝑝௅௜ ൌ 𝐶ఘಽ
𝜖௅|𝑣⃗௥|ଶ, 𝐶 ൌ

1
4

. (8)

We will consider drag, lift and wall forces, 

𝑀௅
ᇱ ൌ 𝑀௄

ᇱ஽ ൅ 𝑀௄
ᇱ௅ ൅ 𝑀௄

ᇱௐ, (9)

with 

𝑀ீ
ᇱ஽ ൌ െ𝑀௅

ᇱ஽ ൌ െ
3
8

𝜖ீ

𝑅௕
𝐶஽ఘಽ𝑣⃗௥|𝑣⃗௥|, (10)

𝐶஽ ൌ
24
𝑅𝑒

ሺ1 ൅ 0.1𝑅𝑒଴.଻ହሻ, (11)

𝑅𝑒 ൌ
ଶோ್ఘಽ|௩ሬ⃗ ೝ|

ఓ೘
, 𝜇௠ ൌ

ఓಽ

ሺଵିఢಸሻ
, (12)

𝑀௅
ᇱ௅ ൌ െ𝑀௅

ᇱ௅ ൌ െ𝐶௅𝜖ீ𝜌௅𝑣⃗௥⋀ሺ∇⋀𝑣⃗௅ሻ, (13)

𝑀ீ
ᇱௐ ൌ െ𝑀௅

ᇱௐ

ൌ

⎩
⎪
⎨

⎪
⎧ 𝜖௅𝜌௅ห𝑢∥ห

ଶ
൤𝐶௪ଵ ൅ 𝐶௪ଶ ൬

𝑅௕

𝑦଴
൰൨ 𝑛௕෦ 𝑖𝑓 

𝜖ீ𝜌௅ห𝑢∥ห
ଶ

𝑅௕
൤𝐶௪ଵ ൅ 𝐶௪ଶ ൬

𝑅௕

𝑦଴
൰൨ ൐ 0,

0                                       𝑖𝑓
𝜖ீ𝜌௅ห𝑢∥ห

ଶ

𝑅௕
൤𝐶௪ଵ ൅ 𝐶௪ଶ ൬

𝑅௕

𝑦଴
൰൨ ൑ 0 

, 
(14)

𝑢∥ ൌ 𝑣⃗௥ െ ሾ𝑛௪.෮ 𝑣⃗௥ሿ, (15)

𝐶௪ଵ ൌ െ0.1, 𝐶௪ଶ ൌ 0.147, (16)
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where, 𝑦଴ is the distance to the wall, 
w

n


 the exterior unit normal and 𝑅௕  the bubble radius. 

     Considering incompressible unidirectional laminar fully developed flow of Newtonian 
fluid with bubble floating through a vertical cylindrical duct. The set of five differential 
equations corresponding to five unknown functions, i.e., 𝑣௅ሺ𝑟ሻ, 𝑣ீሺ𝑟ሻ, 𝑝௅ሺ𝑟, 𝑧ሻ, 𝑝ீሺ𝑟, 𝑧ሻ and 
𝜖ீሺ𝑟, 𝑧ሻ, as follows. 
     Momentum conservation equation of the gas phase in the radial direction r


 

𝜖ீ ቈ
𝜕𝑝ீ

𝜕𝑟
൅ 𝐶௅𝜌௅𝑣௥

𝜕𝑣௅

𝜕𝑟
൅

𝜌௅𝑣௥
ଶ

𝑅௕
൬𝐶௪ଵ ൅ 𝐶௪ଶ

𝑅௕

ሺ𝑅 െ 𝑟ሻ
൰቉ ൌ 0, (17)

where R is the internal radius of the duct. 
     Momentum conservation equation of the gas phase in the axial direction z


 

𝜕𝑝ீ

𝜕𝑟
ൌ െ𝜌ீ𝑔 െ

3
8

𝐶஽

𝑅௕
𝜌௅𝑣௥|𝑣௥|. (18)

     Relative velocity rv is calculated by using the above equation, which is considered 

uniform. Momentum conservation equation of the liquid phase in the radial direction r


 

𝜖௅
𝜕𝑝௅

𝜕𝑟
ൌ െ

𝜕
𝜕𝑟

ሾ𝐴𝜌௅𝜖௅ሺ1 െ 𝜖௅ሻ𝑣௥
ଶሿ ൅ 𝐶௅𝜖ீ𝜌௅𝑣௥

𝜕𝑣௅

𝜕𝑟
൅ 𝐶ఘಽ

ሺ1 െ 𝜖ீሻ𝑣௥
ଶ 𝜕𝜖ீ

𝜕𝑟

൅
𝜖ீ𝜌௅𝑣௥

ଶ

𝑅௕
൬𝐶௪ଵ ൅ 𝐶௪ଶ

𝑅௕

ሺ𝑅 െ 𝑟ሻ
൰ െ 𝐶ଵ𝜌௅𝑣௥

ଶ 𝜕𝜖ீ

𝜕𝑟
. 

(19)

     Momentum conservation equation of the liquid phase in the axial direction z


 

𝜖௅
𝜕𝑝௅

𝜕𝑟
ൌ

1
𝑟

𝜕
𝜕𝑟

൤𝑟𝜖௅𝜇௅
𝜕𝑣௅

𝜕𝑟
൨ ൅

3
8

𝜖ீ

𝑅௕
𝐶஽𝜌௅𝑣௥|𝑣௥| െ 𝜖௅𝜌௅𝑔 ൅ 𝐶ଶ𝜇௅

𝜕𝑣௅

𝜕𝑟
𝜕𝜖ீ

𝜕𝑟
. (20)

     Jump condition at the interphase is given by 

𝑝ீ െ 𝑝௅ ൌ
2𝜎
𝑅௕

െ 𝐶ఘಽ
ሺ1 െ 𝜖ீሻ𝑣௥

ଶ. (21)

3  PROBLEM SOLUTION 

3.1  Region away from the wall 

We define 

𝜌 ≡ 𝜌௘௙௙ ൌ 𝜖௅𝜌௅ ൅ 𝜖ீ𝜌ீ, 𝜌̅ ≡
1
𝑠

න 𝜌. 𝑑𝑠 ,
𝜕𝑃
𝜕𝑧

≡
𝜕𝑝
𝜕𝑧

൅ 𝜌̅𝑔, (22)

where S is the cross-sectional area of the pipe. 

     Eliminating the drag force from eqns (18) and (20), and using 𝜖௅ ൌ
ሺఘିఘಸሻ

ሺఘಽିఘಸሻ
 we get 

డ௣

డ௭
൅ ሺ𝜌 െ 𝜌̅ሻ𝑔 ൌ

ሺఘିఘಸሻ

ሺఘಽିఘಸሻ

ఓಽ

௥

డ

డ௥
ቀ𝑟

డ௩ಽ

డ௥
ቁ ൅ ሺ𝐶ଶ െ 1ሻ𝜇௅

డ௩ಽ

డ௥

డఢಸ

డ௥
. (23)

     On the other hand, replacing eqns (19) and (21) into eqn (17) we get, after multiplication 
by 

ఢಽ

ሺఘಽ௩ೝሻ
, 
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ሺ𝜌 െ 𝜌ீሻ
ሺ𝜌௅ െ 𝜌ீሻ

1
ሺ𝜌௅ െ 𝜌ீሻ

𝜕𝑝
𝜕𝑧

ൌ
𝐶௅

ሺ2𝐶 െ 𝐴ሻ𝑣௥

𝜕𝑣௅

𝜕𝑟
൅

1
ሺ2𝐶 െ 𝐴ሻ𝑅௕

൬𝐶௪ଵ ൅ 𝐶௪ଶ
𝑅௕

ሺ𝑅 െ 𝑟ሻ
൰ 

െ
ሺ𝐶ଵ ൅ 𝐴𝜖ீሻ
ሺ2𝐶 െ 𝐴ሻ

1
ሺ𝜌௅ െ 𝜌ீሻ

𝜕𝑝
𝜕𝑟

. 
(24)

     As a result, the system is reduced to only two equations. Introducing non-dimensional 
variables: 

డ௣∗

డ௭
ൌ

ଵ

ሺఘಽିఘಸሻ

డ௣

డ௭
, 𝐿ଶ ൌ

ଶఓಽ௩ಽሺ஼ି஺ሻ

௚ሺఘಽିఘಸሻ஼ಽ
, 𝑣∗ ൌ

௩ಽ

௩ೝ

஼ಽ

ଶሺ஼ି஺ሻ
, 𝑟∗ ൌ

௥

௅
, 𝑅∗ ൌ

ோ

௅
, 𝑅௅

∗ ൌ
ோ್

௅
, 𝐸 ൌ

஼ೢభ

ଶሺ஼ି஺ሻோ್
∗ , 𝐷 ൌ

஼ೢమ

ଶሺ஼ି஺ሻ
. (25)

     From eqns (23) and (24), using the scaled variables in eqn (25) and assuming the wall-
force terms are negligible, the system is reduced to following ordinary differential equation 

ሺ𝜖௅ሻଶ డమఢಽ

డ௥∗మ ൅ ሺ2 െ 𝐶ଶሻ𝜖௅ ቀ
డఢಽ

డ௥∗ቁ
ଶ

൅
ሺఢಽሻమ

௥∗

డఢಽ

డ௥∗ െ 𝜖௅ ൅
ሺ஼భା஺ሻ

ଶሺ஼ି஺ሻ
൤𝜖௅ ቀ

ଵ

௥∗

డఢಽ

డ௥∗ ൅
డమఢಽ

డ௥∗మቁ െ

ሺ𝐶ଶ െ 1ሻ ቀ
డఢಽ

డ௥∗ቁ
ଶ

൨ ൌ
డ௣∗

డ௭
െ 𝜖௅ഥ , (26)

where 𝜖௅ഥ ൌ
ሺఘഥିఘಸሻ

ሺఘಽିఘಸሻ
. This equation is valid where the wall force is not active ቀ𝑅 െ 𝑟 ൐

஽௅

ா
ቁ, 

It can be seen that the right-hand side is a constant, independent of 
*r . The values of the 

constants A and B are fixed (𝐴 ൌ
ଷ

ଶ଴
, 𝐵 ൌ

ଵ

ଶ଴
ሻ, and considered following two set of values for 

𝐶ଵ and 𝐶ଶ, with 𝐶ଵ ൌ െ
ଷ

ଶ଴
 and 𝐶ଶ ൌ 1, taken for Antal et al. [4] (Model I), and 𝐶ଵ ൌ

ଷ଻

ଵ଴଴
 and 

𝐶ଶ ൌ 0, for Drew and Passman [2] (Model II). 
     In the case of Model I, eqn (26) is reduced to 

ሺ𝜖௅ሻଶ డమఢಽ

డ௥∗మ ൅ 𝜖௅ ቀ
డఢಽ

డ௥∗ቁ
ଶ

൅
ሺఢಽሻమ

௥∗

డఢಽ

డ௥∗ െ 𝜖௅ ൌ
డ௣∗

డ௭
െ 𝜖௅ഥ , (27)

which is the equation of laminar fully developed bubbly flow far from the wall and contains 
no parameter except constant on the right-hand side. Eqn (27) can be solved to get a different 

solution for pressure gradient and the amount of gas in the flow. By using * 0r  , (0)L  

eqn (27) can be rewritten as 

𝜕𝑃∗

𝜕𝑧
െ 𝜖௅ഥ ൌ െ𝜖௅ሺ0ሻሺ1 ൅ 𝜆ሻ, (28)

finally resulting in 

ሺ𝜖௅ሻଶ 𝜕ଶ𝜖௅

𝜕𝑟∗ଶ ൅ 𝜖௅ ൬
𝜕𝜖௅

𝜕𝑟∗൰
ଶ

൅
ሺ𝜖௅ሻଶ

𝑟∗

𝜕𝜖௅

𝜕𝑟∗ െ 𝜖௅ ൌ െ𝜖௅ሺ0ሻሺ1 ൅ 𝜆ሻ. (29)

     If the model of Drew and Passman is used we following equation is obtained 

ሺ𝜖௅ሻଶ 𝜕ଶ𝜖௅

𝜕𝑟∗ଶ ൅ 2𝜖௅ ൬
𝜕𝜖௅

𝜕𝑟∗൰
ଶ

൅
ሺ𝜖௅ሻଶ

𝑟∗

𝜕𝜖௅

𝜕𝑟∗ െ 𝜖௅

൅
ଷଷ

଼଴
൤𝜖௅ ቀ

ଵ

௥∗

డఢಽ

డ௥∗ ൅
డమఢಽ

డ௥∗మቁ ൅ ቀ
డఢಽ

డ௥∗ቁ
ଶ

൨ ൌ െ𝜖௅ሺ0ሻሺ1 ൅ 𝜆ሻ, 
(30)
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where 𝜆 is a measure of the difference between the applied pressure gradient and the effective 
weight of the mixture at the centre of the pipe. With the given initial conditions 𝜖௅ሺ0ሻ and 
𝜖௅́ሺ0ሻ we then solve eqns (29) and (30). 

4  SOLUTION OF THE PROBLEM 
In the previous section problem in the region where the wall forces are not active. In addition, 

all applied pressure gradients were not considered as when /Lp z   is greater than 𝜌௅𝑔̅, 

at the centre by adjusting the void fraction, the pressure gradient cannot be balanced. This is 
valid even if the void fraction is assumed zero. 

     Eqns (17)–(21) can be solved for ( )Lv r  and ( ),G r  which after mathematical 

manipulation and elimination of drag coefficient results in 

𝜕𝑝௅

𝜕𝑧
൅ ሺ1 െ 𝜖ீሻ𝜌௅𝑔 ൅ 𝜖ீ𝜌ீ𝑔 ൌ

1
𝑟

𝜕
𝜕𝑟

൤𝑟ሺ1 െ 𝜖ீሻ𝜇௅
𝜕𝑣௅

𝜕𝑟
൨ ൅ 𝐶ଶ𝜇௅

𝜕𝑣௅

𝜕𝑟
𝜕𝜖ீ

𝜕𝑟
, (31)

𝜖ீ
𝜕𝜖ீ

𝜕𝑟
𝑣௥

ଶ ൤൬
1
2

െ 𝐴 ൅ 𝐶ଵ൰ െ
1
5

𝜖ீ൨ ൌ െ𝜖ீ𝐶௅𝑣௥
𝜕𝑣௥

𝜕𝑟
െ 𝜖ீ ൬𝐶௪ଵ ൅ 𝐶௪ଶ

𝑅௕

𝑅𝑟
൰

𝑣௥
ଶ

𝑅௕
, (32)

with following boundary conditions 

𝜕𝑣௅

𝜕𝑟
ሺ0ሻ ൌ 0, 𝑣௅ሺ𝑅ሻ ൌ 0,

𝜕𝜖ீ

𝜕𝑟
ሺ0ሻ ൌ 0. (33)

Using the non-dimensional parameter defined in eqn (25) we get the following form 

𝜕𝑃
𝜕𝑧

൅
𝜌௅

𝜌௅ െ 𝜌ீ
െ 𝜖ீ ൌ  𝐶ଶ

𝜕𝑣
𝜕𝑟

𝜕𝜖ீ

𝜕𝑟
൅

1
𝑟

ሺ1 െ 𝜖ீሻ
𝜕𝑣
𝜕𝑟

൅
𝜕𝑣
𝜕𝑟

𝜕𝜖ீ

𝜕𝑟
൅ ሺ1 െ 𝜖ீሻ

𝜕ଶ𝑣
𝜕𝑟ଶ, (34)

𝜖ீ
𝜕𝜖ீ

𝜕𝑟

ቀ
1
2 െ 𝐴 ൅ 𝐶ଵቁ

2ሺ𝐶 െ 𝐴ሻ
െ 𝜖ீ

ଶ 𝜕𝜖ீ

𝜕𝑟
൬

1
10ሺ𝐶 െ 𝐴ሻ

൰ ൌ െ𝜖ீ
𝜕𝑣
𝜕𝑟

െ 𝐸𝜖ீ െ
𝐷𝜖ீ

𝑅 െ 𝑟
, (35)

subject to boundary conditions 
𝜕𝑣௅

𝜕𝑟
ሺ0ሻ ൌ 0, 𝑣௅ሺ𝑅ሻ ൌ 0,

𝜕𝜖ீ

𝜕𝑟
ሺ0ሻ ൌ 0,  

    𝑤ℎ𝑒𝑟𝑒 𝑃 ൌ
డ௉

డ௭
൅

ఘಽ

ఘಽିఘಸ
. (36)

     Eqns (34)–(36) are solved in Mathematica [6], for a wide set of values by using the 
homotopy analysis method (HAM). Zero-order deformation of the system of equations, the 
linear operator L and the non-linear operator N are defined as 

𝐿ሺ𝑓ሻ ൌ
𝑑ଶ𝑓
𝑑𝑟ଶ, (37)

𝐿ሺ𝑔ሻ ൌ
𝑑𝑔
𝑑𝑟

, (38)

𝑁ሺ𝑓ሻ ൌ
𝜕𝑝
𝜕𝑧

൅
𝜌௅

𝜌௅ െ 𝜌ீ
െ 𝜖ீ െ 𝐶ଶ

𝜕𝑣
𝜕𝑟

𝜕𝜖ீ

𝜕𝑟
െ

1
𝑟

ሺ1 െ 𝜖ீሻ
𝜕𝑣
𝜕𝑟

െ
𝜕𝑣
𝜕𝑟

𝜕𝜖ீ

𝜕𝑟
 

െሺ1 െ 𝜖ீሻ
𝜕ଶ𝑣
𝜕𝑟ଶ, (39)

Computational and Experimental Methods in Multiphase and Complex Flow X  153

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 123, © 2019 WIT Press



𝑁ሺ𝑔ሻ ൌ 𝜖ீ
𝜕𝜖ீ

𝜕𝑟

ቀ
1
2 െ 𝐴 ൅ 𝐶ଵቁ

2ሺ𝐶 െ 𝐴ሻ
െ 𝜖ீ

ଶ 𝜕𝜖ீ

𝜕𝑟
൬

1
10ሺ𝐶 െ 𝐴ሻ

൰ ൅ 𝜖ீ
𝜕𝑣
𝜕𝑟

൅ 𝐸ఢಸ
൅

𝐷𝜖ீ

𝑅 െ 𝑟
. 

(40)

     In the view of boundary condition, the initial guess and boundary condition are 

𝑓ሺ0ሻ ൌ
ଵ

ସ
ሺ𝑃𝑟ଶ െ 𝑃𝑅ଶሻ, (41)

𝑔ሺ0ሻ ൌ
൫௥మିோమ൯

ଶ
, (42)

𝑓ሺ𝑅, ℎሻ ൌ 0; 𝑓ሺ0, ℎሻ ൌ 0; 𝑔ሺ0, ℎሻ ൌ 0, (43)

𝐿ሼ𝑓௠ሺ𝑥ሻሽ െ ሺ1 െ 𝑥௠ሻ𝐿ሼ𝑓଴ሽ ൌ 𝑋௠𝑅ଵ௠ 

𝐿ሼ𝑔௠ሺ𝑥ሻሽ െ ሺ1 െ 𝑥௠ሻ𝐿ሼ𝑔଴ሽ ൌ 𝑋௠𝑅ଶ௠, (44)

and the mth order deformation is 

𝑅ଵ௠ሺ𝑉௠ିଵ, 𝜖௠ିଵሻ ൌ 𝜖ீ௠ିଵሺ𝑟ሻ ൅ 𝐶ଶ ෍ 𝑉௝
ᇱሺ𝑟ሻ𝜖ீ௠ିଵ

ᇱ ሺ𝑟ሻ ൅
1
𝑟

𝑉௠ିଵ
ᇱ ሺ𝑟ሻ

௠ିଵ

௝ୀ଴

 

െ ෍ 𝜖ீ௝ሺ𝑟ሻ𝑉௠ିଵି௝
ᇱ ሺ𝑟ሻ

௠ିଵ

௝ୀ଴

൅ ෍ 𝑉௝
ᇱሺ𝑟ሻ𝜖ீ௠ିଵି௝

ᇱ ሺ𝑟ሻ
௠ିଵ

௝ୀ଴

 

൅𝑉௠ିଵ
ᇱᇱ ൅ ෍ 𝜖ீ௝ሺ𝑟ሻ𝑉௠ିଵି௝

ᇱᇱ ሺ𝑟ሻ െ 𝑋௠𝜆ᇱ,

௠ିଵ

௝ୀ଴

 
(45)

𝑅ଶ௠ሺ𝑉௠ିଵ, 𝜖௠ିଵሻ ൌ
ሺ
1
2 𝐴 ൅ 𝐶ଵሻ

2ሺ𝐶െሻ
෍ 𝜖ீ௝ሺ𝑟ሻ𝜖ீ௠ିଵି௝

ᇱ ሺ𝑟ሻ
௠ିଵ

௝ୀ଴

െ
1

10ሺ𝐶 െ 𝐴ሻ
෍ ෍ 𝜖ீ௞ሺ𝑟ሻ

௠ିଵ

௝ୀ଴

௝

௞ୀ଴

𝜖ீ௝ି௞ሺ𝑟ሻ𝜖ீ௠ିଵି௝
ᇱ ሺ𝑟ሻ

൅ ෍ 𝜖ீ௝ሺ𝑟ሻ𝑉௠ିଵି௝
ᇱ ሺ𝑟ሻ

௠ିଵ

௝ୀ଴

൅ 𝐸ఢீ௠ିଵሺ𝑟ሻ ൅
𝐷

𝑅 െ 𝑟
𝜖ீ௠ିଵሺ𝑟ሻ, 

(46)

where 

𝑋௠ ൌ ቄ0          𝑤ℎ𝑒𝑛 𝑚 ൑ 1.
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
Zero-order and first-order solution by using HAM are 

𝑓଴ ൌ
𝑅ସ

12
െ

𝑃𝑅ସ

30
െ

𝑅ଶ௫మ

10
൅

𝑥ସ

60
൅

𝑃𝑥ସ

30
൅

1
4

ሺെ𝑃𝑅ଶ ൅ 𝑃𝑥ଶሻ (47)

𝑔଴ ൌ
147𝑥ଶ

2000
െ

𝑅ଶ௫మ

10
െ

𝑃𝑅ଶ௫మ

20
െ

𝑅ସ௫మ

20
൅

49𝐿𝑥ଷ

500𝑅௕
൅

3𝑥ସ

20
൅

3𝑃𝑥ସ

40
െ

3𝑅ଶ௫ర

20
െ

𝑥଺

12

൅
1
2

ሺെ𝑅ଶ ൅ 𝑥ଶሻ (48)
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𝑓ଵ ൌ
43241𝑅ସ

180000
െ

7159𝑃𝑅ସ

90000
൅

16𝑅଺

1125
െ

7𝑃𝑅଺

4500
െ

𝑃ଶ𝑅଺

1500
൅

11𝑅଼

42000
െ

23𝑃𝑅଼

21000

െ
49𝐿𝑅ହ

25000𝑅௕
െ

147𝐿𝑃𝑅ହ

25000𝑅௕
െ

7𝑅ସ𝑥ଶ

25
൅

7159𝑥ସ

180000
൅

7159𝑃𝑥ସ

90000

െ
17𝑅ଶ𝑥ସ

900
െ

23𝑃𝑅ଶ𝑥ସ

1800
െ

𝑃ଶ𝑅ସ𝑥ସ

300
െ

𝑅ସ𝑥ସ

600
൅

49𝐿𝑥ହ

25000𝑅௕

൅
147𝐿𝑃𝑥ହ

25000𝑅௕
൅

7𝑥଺

1500
൅

43𝑃𝑥଺

3000
൅

𝑃ଶ𝑥଺

250
൅

𝑅ଶ𝑥଺

600
൅

𝑃𝑅ଶ𝑥଺

300
െ

𝑥଼

1680

െ
𝑃𝑥଼

280
൅

ሺെ𝑃𝑅ଶ ൅ 𝑃𝑥ଶሻ
4

, (49)

𝑔ଵ ൌ െ
272391𝑥ଶ

2000000
െ

3853𝑅ଶ𝑥ଶ

20000
െ

4147𝑃𝑅ଶ𝑥ଶ

40000
െ

551𝑅ସ𝑥ଶ

10000
൅

𝑃𝑅ସ𝑥ଶ

1000
൅

𝑅଺𝑥ଶ

50

൅
𝑃𝑅଺𝑥ଶ

200
൅

𝑅଼𝑥ଶ

200
െ

7203𝐿𝑅𝑥ଶ

500000𝑅௕
െ

147𝑅𝑥ଷ

5000
െ

147𝑃𝑅𝑥ଷ

10000
െ

49𝑅ଷ𝑥ଷ

3750

൅
81193𝐿𝑥ଷ

500000𝑅௕
െ

147𝐿𝑅ଶ𝑥ଷ

2500𝑅௕
െ

49𝐿𝑃𝑅ଶ𝑥ଷ

5000𝑅௕
െ

147𝐿𝑃𝑅ସ𝑥ଷ

5000𝑅௕

൅
8913𝑥ସ

40000
൅

1959𝑃𝑥ସ

16000
൅

32𝑅ଶ𝑥ସ

625
െ

11𝑃𝑅ଶ𝑥ସ

100
െ

3𝑃ଶ𝑅ଶ𝑥ସ

400

െ
9𝑅ସ𝑥ସ

40
െ

3𝑃𝑅ସ𝑥ସ

50
െ

3𝑅଺𝑥ସ

40
൅

21609𝐿ଶ𝑥ସ

1000000𝑅௕
൅

49𝑅𝑥ହ

2500

൅
1421𝐿𝑥ହ

12500𝑅௕
൅

833𝐿𝑃𝑥ହ

25000𝑅௕
൅

1421𝐿𝑅ଶ𝑥ହ

12500𝑅௕
൅

929𝑥଺

18000
൅

11𝑃𝑥଺

90

൅
𝑃ଶ𝑥଺

80
൅

13𝑅ଶ𝑥଺

30
൅

𝑃𝑅ଶ𝑥଺

8
൅

13𝑅ସ𝑥଺

60
െ

399𝐿𝑥଻

5000𝑅௕
െ

133𝑥଼

600

െ
161𝑃𝑥଼

2400
െ

161𝑃𝑥଼

2400
െ

133𝑅ଶ𝑥଼

600
൅

3𝑥ଵ଴

40
൅

21609𝑅ଶ𝑥
1000000ሺ𝑅 ൅ 𝑥ሻ

െ
147𝑅ସ𝑥

10000ሺ𝑅 ൅ 𝑥ሻ
െ

147𝑃𝑅ସ𝑥
20000ሺ𝑅 ൅ 𝑥ሻ

െ
7203𝐿𝑅ଷ𝑥

250000𝑅௕ሺ𝑅 ൅ 𝑥ሻ

൅
ሺെ𝑅ଶ ൅ 𝑥ଶሻ

2
െ

21609𝑅ଶ𝐿𝑜𝑔ሾെ𝑅 ൅ 𝑥ሿ

1000000
൅

147𝑅ସ𝐿𝑜𝑔ሾെ𝑅 ൅ 𝑥ሿ

10000

൅
147𝑃𝑅ସ𝐿𝑜𝑔ሾെ𝑅 ൅ 𝑥ሿ

20000
൅

49𝑅଺𝐿𝑜𝑔ሾെ𝑅 ൅ 𝑥ሿ

10000

൅
7203𝐿𝑅ଷ𝐿𝑜𝑔ሾെ𝑅 ൅ 𝑥ሿ

250000𝑅௕
, 

 

(50)

and so on. 

5  RESULTS AND DISCUSSION 
Analysis of the two-fluid model in case of upward bubbly flows shows that there exists a so-
called peak in the void fraction in the close vicinity of the wall. It is evident that, for the gas–
liquid mixture to flow upward, the pressure gradient must overcome the horizontally 
averaged weight 𝜌̅ 𝑔ഥ . It is clear that the bubble should vanish on the wall. 
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     Figs 1 and 2 show upward flow which is away from the wall for the different values of λ. 
The greater value of λ indicates, greater pressure gradient as compared to effective weight. 
Graphs for model I and model II are shown and upward motion is rapid for large values of λ. 
Fig. 3 shows a comparison of the model I and model II. It can be seen that both models 
converge approximately to the same value. 
     Figs 4–6, show the downward flow of void space for model I and model II for different 
values of 𝜖ீሺ0ሻ. The gravity effect dominates pressure gradient and bubble moves towards 
the lower wall. Figs 7–9 shows the variation of initial coordinate 𝜖ீሺ0ሻ, on both model I and 
model II. For upward flow a greater value of 𝜖ீሺ0ሻ, show a quick rise of the bubble. Close 
to the wall, forces are effective, eqns (33)–(35) in non-dimensional form are simulated by 
using homotopy analysis method. The results shown in Figs 10–12 are for different values of 
bubble radius Rb, intrinsic length L and λ′. It is seen that void fraction profile decreases as the 
absolute value of applied pressure gradient increases, peak enlarges and radical position of 
maximum moves towards the wall. This is due to the result of the rise in lift force that comply 
to increasing liquid velocity gradient at the region close to the wall. 
     In fully developed laminar flow the solutions of the two-fluid model are such that the 
effective weight at the centre of the pipe (i.e., 𝜌௘௙௙𝑔⃗) practically balances the applied pressure 
gradient. Also at some particular limiting value of 𝑟 ൌ 𝑟∗ called critical radius at which 
solution is unreal, i.e., the value of liquid fraction either become zero or greater than one. 
 

 

Figure 1:  Upward flow for model I. Figure 2:  Upward flow for model II. 

 

 

Figure 3:  Upward flow for 𝜆= 0:0001. Figure 4:  Downward flow for model I. 
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Figure 5:  Downward flow for model II. Figure 6:  Comparison of downward flow 
for model I and model II for 
𝜆 = 0.0001. 

 

 

Figure 7:   *
G r  for different  0G  

model I. 

Figure 8:   *
G r  for different  0G  

model II. 

 

 

Figure 9:  Comparison of  *G r  for model 

I and model II for  0G = 0.016.

Figure 10:  Void fraction profile variation in 
Rb. 
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     In current work several physical and mathematical properties of the two-fluid model in 
the simple case of a laminar fully developed bubbly flow in case of a circular pipe have been 
identified. In vertical two-phase flow, it is found that the pressure gradient is cancelled with 
the effective specific weight of the fluid column. It is also found that the lift force balances 
the applied pressure gradient. For reduced gravity values, a prominent effect of lift force was 
observed. In future work, the effect of different boundary conditions on the model will be 
studied. 
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Figure 11:  Velocity profile for variation of L. Figure 12:   Liquid velocity profile for 
variation of upward flow. 
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