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ABSTRACT 
Gravity-driven falling film flows in vertical pipes are relevant in many industrial processes like 
evaporators, chemical reactors, and condensers. The wave formation and propagation processes, which 
continuously take place in the film, have a strong influence on the flow hydrodynamics and the heat 
and mass transfer phenomena. Several researchers have been studying the wave behaviour in these 
multiphase regimes through experimental works and computational fluid dynamics simulation 
techniques. In some simplified cases, like high viscosity fluids and infinity inclined plates, analytical 
solutions have been obtained. In this work, we propose an analytical model for falling film flow regimes 
in vertical pipes. Starting from the incompressible axisymmetric Navier–Stokes equations in cylindrical 
coordinates, we consider the force balance in the fluid, an asymptotic long-wave approximation and the 
first-order perturbation approximation for axial velocity. From this balance, we obtain a partial 
differential equation that describes the interface behaviour through the film thickness. The resulting 
equation can be solved using a numerical approach. The main resulting equation represents a stiff 
problem, thus, we perform a stability analysis using the fluid viscosity as a parameter. Finally, we set 
the model validity conditions and suggest some actions to improve the numerical strategy in order to 
better describe low viscosity fluids. 
Keywords:  falling liquid film, analytical model, vertical pipes, Navier–Stokes equations. 

1  INTRODUCTION 
The dynamics of core-annular flows are relevant in many industrial and biological 
applications, such as oil recovery, nuclear power plants and human body’s airways. In these 
regimes, one fluid phase fills the core, and the other, more viscous, occupies the annulus 
surrounding the pipe wall. When core-phase is air, motionless or with small velocity, the 
volume of annular-phase is small if compared with the pipe dimensions and only the gravity 
force acts on the fluid, then we have a gravity-driven falling film. In addition, films flowing 
down on vertical pipes are very unstable and develop nonlinear waves in the interface surface. 
These waves have a strong influence in the flow hydrodynamics, enhancing the heat and mass 
transfer phenomena. 
     Several researchers have been studying the wave behaviour in these multiphase regimes 
using experimental, analytical and computational fluid dynamics (CFD) approaches. For 
example, Mascarenhas and Mudawar [1] using experimental and CFD techniques to study 
the falling heated water film in turbulent regimes, analyzing the influence of interfacial waves 
on mass, momentum and heat transfer. Camassa et al. [2], conducted experiments and 
constructed an analytical model to study the mechanism by which forced steady airflow 
transports annular layers of high-viscosity fluids (low Reynolds), conditions corresponding 
to lung airways. The model developed shows the different mass transport regimes in the wave 
propagation. Also, Camassa et al. [3] use a numerical model to predict the speed and the 
wavelength of the most unstable mode of these viscous film flows on small pipes in gravity-
driven conditions. The model results are validated using experimental measurements. The 
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direct numerical simulation (DNS) of the full Navier–Stokes equations, was used in [4], to 
study the interfacial instabilities in thin-film flows. This approach is difficult to perform due 
to the complexity of free surface and the needed of extremely finer meshes in space and time. 
Muñoz-Cobo et al. [5], applies the perturbation theory, the long-wave approximation and the 
velocity expansion in harmonic functions to generate an analytical model for gravity-driven 
film flow on inclined plates. The present work extends this work, proposing an analytical 
model for falling films flows regimes in vertical pipes. To construct the model, we consider 
the force balance in the fluid, an asymptotic long-wave approximation and the first-order 
perturbation approximation for axial velocity. From this balance, we obtain a partial 
differential equation that describes the interface behavior through the film. 
     At this point, we discretized the problem using a uniform spatial grid. Then, we integrate 
the interface equation in one arbitrary spatial cell, obtaining an ordinary differential equations 
system (ODES), for the film thickness at each grid cell. The resulting ODES is time 
integrated using an Adams–Moulton type semi-implicit predictor-corrector method to 
generate the numerical results. The resulting model presents a high level of stiffness leading 
to numerical instabilities in some conditions. At the end of this work, we perform numerical 
experiments using fluid viscosity as a parameter to set the model validity range. 
     This paper is arranged as follows. In the next section, we offer the mathematical and 
physical foundations of the proposed analytical model. Section 3 describes the numerical 
procedure and the algorithm for solving the model. In Section 4, we present the numerical 
experiments results and finally, in Section 5 we offer the research conclusions and 
suggestions for future developments. 

2  MATHEMATICAL MODEL FORMULATION 
In order to develop the analytical model for falling films in vertical pipes, we consider an 
axisymmetric cylindrical domain with a down annular flow regime as shown in Fig. 1(a). 
 

 

Figure 1:    (a) Problem domain representation with the main variables; and (b) Detail of a 
differential film volume. 
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     As a starting point, we consider the incompressible axisymmetric Navier–Stokes 
equations in cylindrical coordinates in the form 

𝑟̅ିଵ𝜕௥̅ሺ𝑟̅𝑢തሻ ൅ 𝜕௭̅𝑤ഥ ൌ 0, (1)

𝜕௧̅𝑢ത ൅ 𝑢ത𝜕௥̅𝑢ത ൅ 𝑤ഥ𝜕௭̅𝑢ത ൌ െ
1
𝜌

𝜕௥̅𝑃ത ൅ 𝜈 ൬
1
𝑟̅

𝜕௥̅ሺ𝑟̅𝜕௥̅𝑢തሻ ൅ 𝜕௭̅௭̅𝑢ത െ
𝑢ത
𝑟̅ଶ൰, (2)

𝜕௧̅𝑤ഥ ൅ 𝑢ത𝜕௥̅𝑤ഥ ൅ 𝑤ഥ𝜕௭̅𝑤ഥ ൌ െ
1
𝜌

𝜕௭̅𝑃ത ൅ 𝜈 ൬
1
𝑟̅

𝜕௥̅ሺ𝑟̅𝜕௥̅𝑤ഥሻ ൅ 𝜕௭̅௭̅𝑤ഥ൰ ൅ 𝑔, (3)

where 𝑟̅ and 𝑧̅ are the radial and axial coordinates, respectively; 𝑢ത is the radial velocity 
component; 𝑤ഥ  is the downward direction velocity component; 𝑃ത is the pressure; finally, 𝜌, 
𝜈, and 𝑔 indicates the fluid density, fluid kinematic viscosity and gravity acceleration, 
respectively. Besides, in Fig. 1(a) ℎതሺ𝑧, 𝑡ሻ indicates the film thickness, and ℎത଴ is the Nusselt 
thickness of the flat film [6]. In our notation, the overbars denote dimensional quantities. At 
the pipe wall, we consider no-slip boundary conditions 

𝑤ഥ|ோത ൌ 𝑢ത|ோത ൌ 0. (4) 

     In order to obtain the free surface boundary conditions, we regard some physical 
conditions at the interface. For the normal stress component, we consider that the sum of 
forces at the interface is zero and we obtain 

𝑃ത|ோതି௛ഥ െ 𝑃ത௖ ൅ 𝜎

⎩
⎨

⎧ ൫𝜕௭̅௭̅ℎത൯

ቀ1 ൅ ൫𝜕௭̅ℎത൯
ଶ

 ቁ
ଷ
ଶ

൅
1

𝑅ത െ ℎത
⎭
⎬

⎫

ோതି௛ഥ

 

െ
2𝜇

1 ൅ ൫𝜕௭̅ℎത൯
ଶ ቄ𝜕௥̅𝑢ത ൅ ൫𝜕௭̅ℎത൯ሺ𝜕௭̅𝑢ത ൅ 𝜕௥̅𝑤ഥሻ ൅ ൫𝜕௭̅ℎത൯

ଶ
𝜕௭̅𝑤ഥቅ

ோതି௛ഥ
ൌ 0, 

(5)

here 𝑃ത௖ is the annular-phase pressure, 𝜎 and 𝜇 indicate the fluid surface tension and the fluid 
dynamic viscosity respectively. The eqn (5) is similar to Young–Laplace equation [7]. Then, 
for the tangential stress component, we use the stress continuity condition [3] at the interface 
to get 

ቂ1 െ ൫𝜕𝑧̅ℎത൯
ଶ

ቃ ሼ𝜕𝑧̅𝑢ത ൅ 𝜕𝑟̅𝑤ഥሽோതି௛ഥ ൅ 2𝜕𝑧̅ℎതሼ𝜕𝑧̅𝑤ഥ െ 𝜕𝑟̅𝑢തሽோതି௛ഥ ൌ 0. (6)

     We can obtain an equation to govern the interface using a film mass balance in the interval 
ሾ𝑧, 𝑧 ൅ 𝑑𝑧ሿ. The geometry of the mass balance is displayed in Fig. 1(b). Considering that the 
mass flow variation over time in the film differential volume is equal to the difference 
between the flow entering by the top surface and the flow leaving by the bottom surface, then 
we have 

𝜕௧̅ ቂ2𝜋𝜌ℎത ቀ𝑅ത െ
௛ഥ

ଶ
ቁቃ ൌ െ𝜕௭̅ ቂ𝜌 ׬ 2𝜋𝑟̅𝑤ഥ𝑑𝑟̅

ோത

ோതି௛ഥ ቃ. (7)

Solving the integral in eqn (7) using the Leibnitz rule and considering the mass conservation 
eqn (1), we obtain 

𝜕௧̅ℎതሺ𝑧̅, 𝑡̅ሻ ൌ െൣ𝑤ഥ|ோതି௛ഥ 𝜕𝑧̅ ℎത ൅ 𝑢ത|ோതି௛ഥ൧. (8)
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The eqn (8) is a partial differential equation that describes the fluid interface as a function of 
the time and z-coordinate, some authors call this equation, a kinematic boundary condition 
[3]. Is possible to obtain the integral formulation for the interface equation. For that, we 
define 𝑞ത as the mass flow rate through a radian of the circumference in the form 

𝑞ത ൌ න 𝑟̅𝑤ഥሺ𝑟̅, 𝑧̅, 𝑡̅ሻ𝑑𝑟̅
ோത

ோതି௛ഥ
, (9)

then, we calculate the time derivative on the eqn (7) left side. Considering eqn (9) for the 
right side and grouping, the interface integral formulation is written as 

൫𝑅ത െ ℎത൯𝜕௧ℎത ൅ 𝜕௭̅𝑞ത ൌ 0. (10) 

     At this stage, we introduce the dimensionless parameters to transform the equations 
system into a non-dimensional form. This dimensionless scheme does not depend on mass 
flow quantities and was proposed by Ruyer-Quil and Manneville [8]. The dimensionless 
parameters are 

𝐿௖ ൌ ቀఔమ

௚
ቁ

ଵ/ଷ
, 𝑇௖ ൌ ቀ ఔ

௚మቁ
ଵ/ଷ

, 𝑈௥ ൌ ሺ𝜈𝑔ሻଵ/ଷ, 𝑃௥ ൌ 𝜌ሺ𝜈𝑔ሻଶ/ଷ, 𝐾௔ ൌ
ఙ

ఘఔర/య௚భ/య, (11) 

where 𝐿௖ and 𝑇௖ are the characteristic longitude and time, 𝑈௥ and 𝑃௥ are the reference velocity 
and pressure and 𝐾௔ is the Kapitza number. The mass conservation and momentum eqns (1)–
(3) in the dimensionless form are written as 

𝑟ିଵ𝜕௥ሺ𝑟𝑢ሻ ൅ 𝜕௭𝑤 ൌ 0, (12)

𝜕௧𝑢 ൅ 𝑢𝜕௥𝑢 ൅ 𝑤𝜕௭𝑢 ൌ െ𝜕௥𝑃 ൅ 𝑟ିଵ𝜕௥ሺ𝑟𝜕௥𝑢ሻ ൅ 𝜕௭௭𝑢 െ
𝑢
𝑟ଶ, (13)

𝜕௧𝑤 ൅ 𝑢𝜕௥𝑤 ൅ 𝑤𝜕௭𝑤 ൌ െ𝜕௭𝑃 ൅ 𝑟ିଵ𝜕௥ሺ𝑟𝜕௥𝑤ሻ ൅ 𝜕௭௭𝑤 ൅ 1. (14)

The wall boundary condition (eqn (4)), appear as 

𝑤|ோ ൌ 𝑢|ோ ൌ 0, (15) 

and the boundary conditions at the fluid interface (eqns (5) and (6)) become 

𝑃|ோି௛ െ 𝑃௖ ൅ 𝐾𝑎 ൝
𝜕௭௭ℎ

ሺ1 ൅ ሺ𝜕௭ℎሻଶ ሻ
ଷ
ଶ

൅
1

𝑅 െ ℎ
ൡ

ோି௛

 

െ
2

1 ൅ ሺ𝜕௭ℎሻଶ
ሼ𝜕௥𝑢 ൅ ሺ𝜕௭ℎሻሺ𝜕௭𝑢 ൅ 𝜕௥𝑤ሻ ൅ ሺ𝜕௭ℎሻଶ𝜕௭𝑤ሽோି௛ ൌ 0, 

(16)

ሾ1 െ ሺ𝜕𝑧ℎሻଶሿሼ𝜕𝑧𝑢 ൅ 𝜕𝑟𝑤ሽோି௛ ൅ 2𝜕𝑧ℎሼ𝜕𝑧𝑤 െ 𝜕𝑟𝑢ሽோି௛ ൌ 0. (17)

The PDE interface equation (eqn (8)) and the corresponding integral form (eqn (10)) are 
transformed into 

𝜕௧ℎሺ𝑧, 𝑡ሻ ൌ െሾ𝑤ோି௛ 𝜕𝑧 ℎ ൅ 𝑢|ோି௛ሿ, (18) 

ሺ𝑅 െ ℎሻ𝜕௧ℎ ൅ 𝜕௭𝑞 ൌ 0, (19) 

respectively. In eqn (19), the parameter 𝑞 adopts the non-dimensional form of eqn (9) 
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𝑞 ൌ න 𝑟𝑤ሺ𝑟, 𝑧, 𝑡ሻ𝑑𝑟
ோ

ோି௛
. (20) 

     The interface integral eqn (19) relates the film thickness ℎ, with the axial velocity 𝑤. 
Then, if we obtain one approximation for the axial velocity, we can evaluate the integral term 
in eqn (20) and solve the resultant PDE to get the film thickness. 
     Now, we regard the long-wave approach [3], [5], [6], this is, when the film surface 
perturbations wavelength (𝜆), is greater than the film thickness. Thus, the perturbation 
parameter is defined by 

𝜀 ൌ
ℎ
𝜆

≪ 1. (21) 

     Rewriting the constitutive eqns (12)–(14), the corresponding boundary conditions eqns 
(15)–(17) and the interface eqn (19) and considering a long-wave approximation, we generate 
the general perturbative equations. Here, the terms involving temporal and z-spatial 
derivatives, are first order in ε.  
     From these considerations, the resulting balance equations are 

𝑟ିଵ𝜕௥ሺ𝑟𝑢ሻ ൅ 𝜀𝜕௭𝑤 ൌ 0, (22) 

𝜀𝜕௧𝑢 ൅ 𝑢𝜕௥𝑢 ൅ 𝜀𝑤𝜕௭𝑢 ൌ െ𝜕௥𝑃 ൅ 𝑟ିଵ𝜕௥ሺ𝑟𝜕௥𝑢ሻ ൅ 𝜀ଶ𝜕௭௭𝑢 െ
𝑢
𝑟ଶ, (23) 

𝜀𝜕௧𝑢 ൅ 𝑢𝜕௥𝑢 ൅ 𝜀𝑤𝜕௭𝑢 ൌ െ𝜀𝜕௭𝑃 ൅ 𝑟ିଵ𝜕௥ሺ𝑟𝜕௥𝑤ሻ ൅ 𝜀ଶ𝜕௭௭𝑤 ൅ 1. (24) 

The perturbative equations for the normal (eqn (16)) and tangential (eqn (17)) stress at the 
film surface are written as 

𝑃|ோି௛ െ 𝑃௖ ൅ 𝐾𝑎 ൝
𝜀ଶ𝜕௭௭ℎ

ሾ1 ൅ 𝜀ଶሺ𝜕௭ℎሻଶ ሿ
ଷ
ଶ

൅
1

𝑅 െ ℎ
ൡ

ோି௛

 

െ
2

1 ൅ 𝜀ଶሺ𝜕௭ℎሻଶ
ሼ𝜕௥𝑢 ൅ 𝜀ሺ𝜕௭ℎሻሺ𝜀𝜕௭𝑢 ൅ 𝜕௥𝑤ሻ ൅ 𝜀ଷሺ𝜕௭ℎሻଶ𝜕௭𝑤ሽோି௛ ൌ 0, 

(25) 

ሾ1 െ 𝜀2ሺ𝜕𝑧ℎሻଶሿሼ𝜀𝜕𝑧𝑢 ൅ 𝜕𝑟𝑤ሽோି௛ ൅ 2𝜀𝜕𝑧ℎሼ𝜀𝜕𝑧𝑤 െ 𝜕𝑟𝑢ሽோି௛ ൌ 0. (26) 

     For the wall boundary condition in eqn (15) and the interface eqn (19), their perturbative 
form is equal to the corresponding dimensionless equations. At this point, we have all the 
equations in the perturbative mode. It is possible to find the problem’s solutions, this is, 
velocities and pressure, using the first-order expansion expresses as 

𝑢 ൌ 𝑢଴ ൅ 𝜀𝑢ଵ, (27) 

𝑤 ൌ 𝑤଴ ൅ 𝜀𝑤ଵ, (28) 

𝑝 ൌ 𝑝଴ ൅ 𝜀𝑝ଵ. (29) 

     Now, we write the zero-order perturbative equations. To perform this step, we substitute 
the expansion eqns (27)–(29) in the perturbative eqns (22)–(26) and (15) and take the limit 
𝜀 → 0.  
     For the continuity eqn (22) we obtain 
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𝑟ିଵ𝜕௥ሺ𝑟𝑢଴ሻ ൌ 0, (30) 

here, considering the wall boundary conditions, we have that 𝑢଴ሺ𝑟ሻ ൌ 0. This result is 
consistent with the problem phenomenology where the changes in the radial direction are 
lower in order than the changes in the axial direction. For the momentum eqns (23) and (24) 
and considering the previous result for 𝑢଴, we have 

𝜕௥𝑃଴ ൌ 0, (31) 

𝑟̅ିଵ𝜕௥ሺ𝑟𝜕௥𝑤଴ሻ ൌ െ1, (32) 

for the normal stress eqn (25) we obtain 

𝑃଴|ோି௛ ൌ 𝑃௖ െ 𝐾𝑎 ൜𝜕௭௭ℎ ൅
1

𝑅 െ ℎ
ൠ

ோି௛
, (33) 

here, we use a serial expansion to retain the axial curvature term according with [9]. For the 
tangential stress eqn (26) the results is 

𝜕௥𝑤଴|ோି௛ ൌ 0, (34) 

and the non-slip wall boundary conditions appear as 

𝑤଴|ோ ൌ 𝑢଴|ோ ൌ 0. (35) 

We integrate the eqn (32) to obtain the zero-order moment for radial velocity 𝑤଴, 

𝑤଴ሺ𝑟, 𝑧ሻ ൌ
ሺ𝑅 െ ℎሻଶ

2
𝑙𝑜𝑔 ቀ

𝑟
𝑅

ቁ ൅
ሺ𝑅ଶ െ 𝑟ଶሻ

4
, (36) 

finally, using eqn (31) and the respective boundary condition (33), we have 𝑃଴ expressed as 

𝑃଴ሺ𝑧, 𝑡ሻ ൌ 𝑃௖ െ 𝐾𝑎 ൜𝜕௭௭ℎ ൅
1

𝑅 െ ℎ
ൠ. (37) 

     At this point we have the zero-order equations and their corresponding solutions. Now, 
we proceed with the first-order formulation.  
     We substitute the first-order expansions (27)–(29) in eqns (22)–(26) and (15) and consider 
the first order terms, to obtain the first order constitutive equations. So, the first order 
continuity equation appears as 

𝑟ିଵ𝜕௥ሺ𝑟𝑢ଵሻ ൅ 𝜕௭𝑤଴ ൌ 0, (38) 

in (38), we use eqn (36) for 𝑤଴ and integrate to obtain 𝑢ଵ in the form 

𝑢ଵሺ𝑟, 𝑧, 𝑡ሻ ൌ
𝜕௭ℎ

𝑟
ሺ𝑅 െ ℎሻ ቊ

𝑟ଶ

2
𝑙𝑜𝑔 ቀ

𝑟
𝑅

ቁ ൅
𝑅ଶ െ 𝑟ଶ

4
ቋ. (39) 

The corresponding first-order radial momentum equation appear as 

𝜕௥𝑃ଵ ൌ 𝑟̅ିଵ𝜕௥ሺ𝑟𝜕௥𝑢ଵሻ െ
𝑢ଵ

𝑟ଶ, (40) 

the first-order axial momentum equation is written in the form 

𝑟̅ିଵ𝜕௥ሺ𝑟𝜕௥𝑤ଵሻ ൌ 𝜕௭𝑃଴ ൅ 𝜕௧𝑤଴ ൅ 𝑢ଵ𝜕௥𝑤଴ ൅ 𝑤଴𝜕௭𝑤଴, (41) 

at the interface the first-order tangential stress equation is written as 
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𝜕௥𝑤ଵ|ோି௛ ൌ 0, (42) 

and the boundary condition at wall 

𝑤ଵ|ோ ൌ 0. (43) 

Using the solutions for 𝑃଴, (eqn (37)), 𝑤଴ (eqn (36)) and 𝑢ଵ (eqn (39)), we integrate the eqn 
(41) to obtain the first-order component of radial velocity (𝑤ଵ). After some algebraic work, 
the result appears as 

𝑤ଵሺ𝑟, 𝑧, 𝑡ሻ ൌ 𝐾𝑎𝜕௭௭௭ℎ ቊ
𝑅ଶ

4
െ

𝑟ଶ

4
൅

ሺ𝑅 െ ℎሻଶ

2
𝑙𝑜𝑔 ቀ

𝑟
𝑅

ቁቋ ൅ 

                          𝐾𝑎𝜕௭ℎ ቊ
1
2

𝑙𝑜𝑔 ቀ
𝑟
𝑅

ቁ ൅
𝑅ଶ

4ሺ𝑅 െ ℎሻଶ െ
𝑟ଶ

4ሺ𝑅 െ ℎሻଶቋ ൅ 

                      
𝜕௭ℎ
128

ሺ𝑅 െ ℎሻ ቄ𝑟ସ ൅ 11𝑅ସ െ 12𝑟ଶ𝑅ଶ ൅ 8𝑟ଶ𝑅ଶ𝑙𝑜𝑔 ቀ
𝑟
𝑅

ቁቅ ൅ 

                      
𝜕௭ℎ
32

ሺ𝑅 െ ℎሻଷ ቄ5𝑅ଶ െ 5𝑟ଶ ൅ ሺ6𝑟ଶ ൅ 4𝑅ଶሻ𝑙𝑜𝑔 ቀ
𝑟
𝑅

ቁ െ 

                                                  ሺ𝑟ଶ െ 𝑅ଶሻ ൤8𝑙𝑜𝑔 ൬
𝑅 െ ℎ

𝑅
൰൨ െ4𝑟ଶ𝑙𝑜𝑔ଶ ቀ

𝑟
𝑅

ቁ ൅ 

                                                   𝑙𝑜𝑔 ቀ
𝑟
𝑅

ቁ 𝑙𝑜𝑔 ൬
𝑅 െ ℎ

𝑅
൰ ሺ8𝑟ଶ െ 4𝑅ଶሻൠ 

                      
𝜕௭ℎ
16

ሺ𝑅 െ ℎሻଷ ቄ𝑅ଶሾ𝑙𝑜𝑔ଶሺ𝑟ሻ െ 𝑙𝑜𝑔ଶሺ𝑅ሻሿ െ 2𝑅ଶ𝑙𝑜𝑔 ቀ
𝑟
𝑅

ቁ 𝑙𝑜𝑔ሺ𝑅 െ ℎሻቅ ൅ 

                  
𝜕௭ℎ

8
ሺ𝑅 െ ℎሻହ ൜𝑙𝑜𝑔 ቀ

𝑟
𝑅

ቁ ൤𝑙𝑜𝑔 ൬
𝑅 െ ℎ

𝑅
൰ െ 2𝑙𝑜𝑔ଶ ൬

𝑅 െ ℎ
𝑅

൰ ൅
3
4

൨ൠ . (44) 

     Eqns (36) and (44) represent the first-order approximation for radial velocity. Using these 
approximations in the interface integral eqn (19) we can solve it, through a numerical 
procedure obtaining the liquid interface behavior. In the next section, we describe the 
numerical approach. 

3  NUMERICAL PROCEDURE 
To analyze the film hydrodynamics, specifically the wave evolution under different 
geometrical and physical conditions, we have developed a numerical method to integrate the 
eqn (19). We set the calculation domain to a test pipe with 0 ൑ 𝑧 ൑ 𝐿 of length. Firstly, we 
discretize this domain using a uniform grid of 𝑁 spatial cells, with a length of ∆𝑧 ൌ 𝐿/𝑁. 
The spatial cell boundaries are given by 𝑧௜ ൌ ሺ𝑖 െ 1ሻ∆𝑧, with 𝑖 ൌ 1: 𝑁 ൅ 1. The coordinates 
of each spatial cell were taken at the spatial cell centers and denoted by overdot, i.e.  
𝑧ሶ௜ ൌ ሺ𝑖 െ 1/2ሻ∆𝑧 with 𝑖 ൌ 1: 𝑁. So, an overdot in a magnitude with sub-index 𝑖 means that 
magnitude is being calculated at the center of the i-th spatial cell, located between the 
boundaries 𝑧௜ and 𝑧௜ାଵ. In the other hand, a magnitude with sub-index 𝑖 without overdot is 
related to the i-th cell boundary. 
     In the second step, we spatially discretize the PDE (eqn (19)). Then, we apply the 
averaging operator over a spatial cell 
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𝑓ሶ
௜ ൌ

1
∆𝑧

න 𝑓ሺ𝑧ሻ𝑑𝑧

௭೔శభ

௭೔

, (45) 

in eqn (19). The result is written as 

𝑑௧ℎሶ
௜ሺ𝑡ሻ ൌ െ

𝑞௜ାଵሺ𝑡ሻ െ 𝑞௜ሺ𝑡ሻ

ൣ𝑅 െ ℎሶ
௜ሺ𝑡ሻ൧∆𝑧

, 𝑖 ൌ 1 … 𝑁. (46) 

here the mass flow by a radian values 𝑞௜ሺ𝑡ሻ are obtained integrating eqn (20) over the film 
and evaluating for the corresponding 𝑧௜. To integrate eqn (20), we use the approximation for 
radial velocity defined by eqns (36) and (44). The first and third z-derivatives that appears in 
𝑞௜ሺ𝑡ሻ are numerically evaluated at the boundaries of each spatial cell using an appropriate 
difference scheme [10]. 
     The ordinary differential equation system represented by eqn (46) has one equation per 
spatial cell with the corresponding average film thickness ℎሶ

௜ሺ𝑡ሻ as unknown. To express the 
film thickness at the cell boundaries ℎ௜ሺ𝑡ሻ in terms of the values at the node centers, we 
consider a linear approximation in the form 

ℎ௜ሺ𝑡ሻ ൌ ቀℎሶ
௜ିଵሺ𝑡ሻ ൅ ℎሶ

௜ሺ𝑡ሻቁ 2⁄ , 𝑖 ൌ 2 … 𝑁, (47) 

for the boundaries ℎଵሺ𝑡ሻ and ℎேାଵሺ𝑡ሻ values, we derive appropriate linear schemes using the 
left/right cell centers values. The linear approximation is a good approach for a fine uniform 
spatial grid [11]. 
     The coefficients analysis and the preliminary calculations show that the ODE system (46) 
is a stiff problem [12]. A strategy to reduce the stiffness is to decrease the coefficients order, 
in consequence, we manipulate (46), extracting 𝑅ହ factor in the right side numerator, and 
introducing a variable change ℎሶ

௜ሺ𝑡ሻ ൌ ℎ′ሶ ௜ሺ𝑡ሻ 𝑅⁄ , the result is 

𝑑௧ℎ′ሶ 𝑖ሺ𝑡ሻ ൌ െ
𝑅ଷൣ𝑞′

௜ାଵሺ𝑡ሻ െ 𝑞′
௜ሺ𝑡ሻ൧

൤1 െ ℎ′ሶ
𝑖ሺ𝑡ሻ൨ ∆𝑧

.  (48) 

     To solve the system of eqn (48), we use a semi-implicit fourth order Adams–Moulton 
predictor-corrector method, with the prediction step based on the Adams–Bashforth 
algorithm [5], [12]. To initialize the Adams–Moulton multi-step method, we perform four 
iterations using a classical Runge–Kutta method [11]. As the initial condition for the problem, 
we use a flat Nusselt profile in all domain, adding at the first-quarter domain inlet, a small 
multiple modes Fourier perturbation [2] expressed as 

ℎሺ𝑧, 0ሻ ൌ ℎ଴ െ ∑ 𝑏 𝑐𝑜𝑠ሺ2𝜋𝑘𝑧 ൅ 𝛼௞ሻ௄
௞ୀଵ , 0 ൑ 𝑧 ൑ 𝐿/4, (49) 

where 𝐾 is the Fourier modes number, typically 𝐾 ൌ 6, the amplitude 𝑏 satisfy 
ሺ𝑏 ൏ 0.05ℎ଴ሻ, and 𝛼௞ is a random phase shift for each mode. 

4  NUMERICAL RESULTS 
To evaluate the analytical model and numerical procedure stability, we select a one-wave 
problem, this is, we study the initial perturbation over the pipe without introducing new inlet 
perturbations. We perform simulations for six different fluids and observe the solution 
stability. The selected fluids and their properties are listed in Table 1. Preliminary simulations 
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showed that the stability is directly related to the fluid viscosity, for that reason we choose 
fluids with viscosities varying from 1E-2 to 1E-7. 

Table 1:  Fluid types and physical properties used in numerical experiments. 

Fluid T (°C)  (m2/s)  (kg/m3)  (N/m) 
Water 25 8.930E-07 9.970E+02 7.200E-02 
Fuel oil light 20 1.650E-05 9.100E+02 2.300E-02 
Castor oil 30 5.800E-04 9.550E+02 3.900E-02 
Glycerine 20 1.183E-03 1.261E+03 6.340E-02 
Fuel oil heavy 20 8.000E-03 9.900E+02 2.300E-02 
Silicone oil [3] - 1.330E-02 9.700E+02 2.150E-02 

 
     The selected simulation domain is a pipe with 2.1E-2m radius and 2.5m length. The initial 
Nusselt thickness corresponds to 1E-3m and the initial perturbation amplitude was 𝑏 ൌ 0.03. 
With this domain, we perform a mesh optimization study. Thus, empirically determine the 
maximum space and temporal steps (∆𝑧 and ∆𝑡), with which we can solve the problem 
without significant result differences for thinner meshes. For the spatial mesh the optimum 
step for all the fluids was ∆𝑧 ൌ 1𝐸 െ 3𝑚. The temporal step for silicone oil, fuel oil heavy, 
glycerin, and castor oil was ∆𝑡 ൌ 5.0𝐸 െ 5𝑠 while for fuel oil light and water was  
∆𝑡 ൌ 5.0𝐸 െ 7𝑠. 
     Fig. 2. shows the wave temporal evolution for castor oil fluid. At the time 𝑡 ൌ 0, the initial 
condition, a multiple cosinusoidal perturbation is observed in the domain first quarter, being 
its maximum amplitude about 1.15ℎ଴. In the final three quarters of this profile, we have a flat 
behavior. Observing the time evolution we can notice that after the first seconds, the wave 
begin to change its shape, compressing and increasing its height, until it reach the maximum  
 

 

Figure 2:  Temporal wave evolution for the castor oil fluid. 
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(1.25ℎ଴ approximately at 𝑡௠ ൌ 25s). From the maximum amplitude point, the wave holds its 
shape, and the amplitude slowly decrease until 𝑡௦ ൌ 115s and 𝑧௦ ൌ 2.3𝑚 position. Next, 
these values stay stationary until the wave leaves the domain. Thus, the wave evolution 
reached the steady state. 
     The wave qualitative behavior of the others evaluated fluids is similar, varying the domain 
position and time where the wave becomes steady. In Table 2 we show the amplitude, 
position and time were the wave reaches the maximum (ℎ௠,  𝑧௠, 𝑡௠). In addition, in Table 3 
we offer this values for the steady state (ℎ௦,  𝑧௦, 𝑡௦) within the time when the wave leaves the 
domain (𝑡்). Finally, Fig. 3 shows the fluid interfaces in the steady state beginning and data 
as film thickness and domain positions are offered. 

Table 2:  Wave evolution features for study fluids at maximum amplitude. 

Fluid ℎ௠ (m) 𝑧௠ (m) 𝑡௠ (s) 
Castor oil 1.236E-03 5.895E-01 2.250E+01 
Glycerine 1.247E-03 5.710E-01 4.400E+01 
Fuel oil heavy 1.237E-03 5.770E-01 2.980E+02 
Silicone oil 1.238E-03 5.930E-01 5.520E+03 

Table 3:  Wave evolution features for study fluids at reach steady stage, and total time. 

Fluid ℎ௦ (m) 𝑧௦ (m) 𝑡௦ (s) 𝑡் (s) 
Castor oil 1.122E-03 2.290E+02 1.150E+02 1.540E+02 
Glycerine 1.147E-03 1.861E+00 1.830E+02 3.120E+02 
Fuel oil heavy 1.179E-03 1.430E+00 7.550E+02 1.840E+03 
Silicone oil 1.183E-03 1.293E+00 1.489E+03 3.251E+03 

 

 
 

Figure 3:  Fluid profiles when the wave evolution reach steady state. 
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     The solutions for water and fuel oil light showed up unstable, for that reason, this data is 
not reported in Fig. 3 and Tables 2 and 3. For these low viscosity fluids, the algorithm results 
were not satisfactory. 
     Table 2 shows that the maximum wave height and its position do not depend on the fluid, 
being governed only by geometry and initial conditions. However, the time taken for the 
wave deformation, and the time needed to reach the maximum amplitude increase 
considerably with the fluid viscosity 
     Analyzing the Table 3 and Fig. 3, we can verify that when the fluid viscosity increases, 
the distance travelled by the wave to become steady decreases, while increasing the 
maximum wave height in steady state. Moreover, the time to reach this state and for the wave 
leaves the pipe, are significantly higher with the viscosity increment. The wave evolution in 
each fluid and the behavior dependence on kinetic viscosity, is consistent with the problem 
physic. 

5  CONCLUSIONS AND FUTURE WORKS 
In this work, we present an analytical model to simulate the wave evolution in gravity driven 
falling films in vertical pipes. The model is represented by an integral-differential equation 
that describes the film thickness as a function of the axial velocity. 
     The proposed numerical strategy discretizes the problem and solves the resultant ODE 
system using a semi-implicit fourth order predictor-corrector method. The analytical model 
and numerical procedure were evaluated solving a one-wave problem for fluids with different 
viscosities. 
     The model and numerical approach offered satisfactory results for medium and high 
viscosity fluids using fine temporal and spatial meshes. Nevertheless, for low viscosity fluids 
was not possible to reproduce the wave evolution, being the results unstable. The ODE 
system associated with this model is stiff, feature that is highlighted for low viscosity fluids. 
In this situation, the proposed numerical procedure is not appropriate. 
     In the short-term, this research future steps involve more robust numerical strategies, 
recommended for high stiffness problems, and techniques to evaluate the ODE’s numerical 
stability. Therefore, we are expecting to get a numerical procedure capable to solve the model 
for low viscosity fluids with a good performance using thick spatial and temporal steps. 
     As a long-term objective, we need to evaluate the proposed model in more complex 
regimes involving multiple waves. In addition, we will use available experimental results to 
validate the model. 
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