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ABSTRACT
Amagat and Dalton mixing-models were analyzed to compare their thermodynamic prediction of shock
states. Numerical simulations utilized the Sandra National Laboratories (SNL) shock hydrodynamic
code CTH [1]. Simulations modeled the University of New Mexico (UNM) shock tube laboratory
experimental series shocking a 1:1 molar mixture of helium (He) and sulfur hexafluoride (SF6). Five
input parameters were varied for sensitivity analysis: driver section pressure; driver section density;
test section pressure; test section density; and mixture ratio (mole fraction). We show via incremental
Latin hypercube sampling (LHS) analysis that significant differences exist between Amagat and Dalton
mixing-model predictions. The differences observed in predicted shock speeds, temperatures, and
pressures grow more pronounced with higher shock speeds.
Keywords: Amagat, Dalton, verification, validation, incremental Latin hypercube sampling, shock tube.

1 INTRODUCTION
When considering how to numerically model a mixture of gases, the following question
arises: what model is most accurate at predicting the thermodynamic properties of the mixture
at a given temperature and pressure? Numerous papers have been published about multi-
phase and multi-component flows [2], reacting flows, flows with arbitrary equations of state
[3], and mixtures at relatively low pressures [4]. Furthermore, papers have been published
on the behavior of the shock region using Monte Carlo methods in binary gas mixtures of
perfect gases [5, 6]. However, one cannot make rigorous convergence assertions with Monte
Carlo methods. Beattie [7, 8] discusses mixtures of real gases. However, there is very little
available on which model (Amagat or Dalton) best applies to the case of a mixture of non-
reacting, real gases, undergoing shock conditions. One may assume from the context of the
available material that Amagat’s Law would be the natural choice but it is not entirely clear
that this is true [2, 9, 10, 11]. In this paper we explore Amagat and Dalton predictions of shock
speed, pressure, and temperature for a 1:1 molar mixture of He and SF6. This is accomplished
via numerical simulations of a shock tube utilizing CTH and Latin hypercube sample (LHS)
analysis.

2 THEORY
The problem of how to model mixtures of real gases presents the question of which of the
three measurable properties, pressure (P ), temperature (T ), and volume (V ), apply to the
whole mixture. Often the assumption is made that the measured temperature applies to the
mixture leaving P and V as the variables that are a function of the components [9]. We know
that for a pure, real gas the following relationship holds [10]

PV = mRgTz, (1)
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where z = z(P, T ) is the compressibility factor of the gas, m is the mass, and Rg is the
specific gas constant. From Amagat, we know that

V =
N∑
i=1

Vi, (2)

where Vi is the volume occupied by component i at the given temperature and pressure of the
mixture, otherwise known as the partial volume relation [9]. On the other hand, from Dalton
we find that

P =
N∑
i=1

Pi, (3)

where Pi is the pressure exerted by the ith component at the given temperature and volume
of the mixture, or the partial pressure relation [9]. For ideal pure gases (z = 1) Amagat’s and
Dalton’s law give the same results [9]. Thus a non-ideal gas or non-ideal set of conditions
must be imposed upon our mixture. Shocks are non-isentropic processes that allow us to
study gases in a non-ideal state.

2.1 Numerical analysis

Shock modeling is inherently difficult in a numerical sense [1]. Great care is required to
make codes stable and accurate across the shock since a shock is often represented as a
discontinuous jump state, introducing a cusp into the numerical results often leading to
numerical instability [1]. This research is interested in differences that may be present in
mixing formulations but not what is happening inside of the shock. The primary interest
is in the effect of the shock front as it passes through the gas mixture. Any numerical
algorithm utilized need only accurately represent the shock speed, shock pressure, and shock
temperature, but does not need to provide an accurate representation of the shock thickness
or interior structure.

2.2 Verification and validation

Verification and validation are distinct and important aspects of any numerical analysis.
Verification comprises, but is not limited to the following: have input decks been found to
be free of typographical errors, was the mathematical analysis performed correctly, how
does the chosen mesh affect the model solution, etc.? Verification is an objective measure
since there are clear correct and incorrect implementations of a representative physical
algorithm(s). On the other hand, validation is harder to achieve because it speaks to the
usefulness of the algorithm(s) as applied. Assumptions, numerical metrics of comparison,
algorithm choice, etc. all play into the validity of observed numerical results. Validation
requires carefully analyzing the results which should include a sensitivity analysis of the
quantities of interest (QoI) in order to make rigorous validity conclusions. Generating a
validation assertion requires objective as well as subjective judgment, statistics, and properly
chosen validity metrics. For this research codes were used that have been validated for various
shock states and equations of state (EOS) applications [1, 12]. To that effect, Rankine-
Hugoniot analysis provided that EOS surfaces passed through the correct thermodynamic
states. Future validation will come through comparison to experimental values and exercising
models via incremental LHS analysis.
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2.3 Incremental Latin hypercube sampling

Incremental samples mean that no sample value is ever reused when you increase sample
size. This allows a convergence statement to be made about the results since values are going
to begin to fill in the entire study space as more samples are run. The term Latin Hypercube
derives from a k-dimensional extension of Latin Square sampling [13]. A Latin Square is a
sparse matrix where any given row and column contains only one value. Wyss and Jorgensen
show an excellent example of a Latin Square in the DAKOTA User Guide [14]. Probability
bins (most often in a cumulative distribution function) are successively subdivided in an
incremental sampling ensuring that the tails of a distribution are accurately represented. This
feature of an incremental LHS study is the second part of convergence. As more samples are
run in a simulation from the LHS input ‘stack’, systematic variation in the inputs forces
systematic variation in the output across the entire PDF. Convergence is determined by
measuring the linear correlation strength of input variables to output variables pairwise. When
correlation order and then correlation strength ceases to change, the incremental LHS study
has converged, which is a strict convergence criteria.

3 METHODOLOGY
3.1 Equation of State (EOS)

The Jacobs–Cowperthwaite–Zwisler (JCZ) EOS was originally developed to give a general
representation over a wide range of material densities [15]. SNL updated the original TIGER
[15] code and JCZ EOS with improved fits over ionization ranges and additional molecular
species in what is now called the JCZS EOS [12, 16]. Hobbs et al. [12] updated the original
Grüneisen function to depend on a molecular potential function, EXP6, which is similar in
form to the Lennard-Jones (LJ) potential [12]. Thus, the Grüneisen function in the JCZS EOS

P =
G(V, T, φ)nRT

V
+ P0(V, φ) (4)

is based on the EXP6 function

φ(r) = ε

[(
6

η − 6

)
eη(1−r/r

∗) −
(

η

η − 6

)(
r∗

r

)6
]
. (5)

Variable η is a fit parameter which has been shown to affect the EXP6 potential relatively
little [12, 16]. Due to the insensitivity of the EXP6 potential to η, most implementations
use η ≈ 13 [12]. The parameters r∗ and ε are the molecular distance of separation at the
minimum potential energy and well depth for the pair potential, respectively. The variable r
is the distance by which the molecules are separated. The advantage of ε and r∗ is that they
can be calculated accurately from generally well-characterized quantities, such as the heat
of formation, molecular number, and composition. Having only two parameters to calculate
makes the JCZS EOS ideal for use on a wide variety of gases [12]. Numerical analogues to
the JCZS EOS were implemented in the form of SESAME tables.

The SESAME format of tabular EOS, developed by Los Alamos National Laboratory
(LANL), is a flexible EOS format allowing custom table generation [17]. The TIGER code
set was utilized to generate the SESAME tables for the simulations by computing equilibrium
thermodynamic states over a range of temperatures and volumes representing tabular EOS for
Amagat or Dalton mixtures. Construction of a mixed EOS was performed by taking outputs
of a TIGER data run from each pure gas and summing over either the volumes (Amagat) or
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the pressures (Dalton) from each pure gas to create a single table. Two nuances to this process
are worth mentioning. Firstly, eqn (2) for the Amagat model is presented with volume as an
extensive parameter. When summing specific volumes (an intensive parameter) sums must be
weighted by mass fraction

v(T, P ) =
∑
i

wivi(T, P ), (6)

where wi = mi/mtot is the ith mass fraction, mi is the ith mass, and mtot is the mixture
total mass. Similarly, specific energy in TIGER is represented as an intensive parameter
with respect to mass and is most easily summed in a mass weighted-fashion. Secondly,
since specific volume is an intensive parameter, a scaling must be performed for the Dalton
table. Given that the temperature and volume are the independent parameters in a Dalton
mixing scheme, equivalence of state is required to get an accurate representation of the mixed
pressure state. For equivalence to occur, the volumes must be equalized. Recall that

V = mv = Mnv, (7)

whereM is molecular mass. In the case of Dalton, we are considering partial pressure of each
constituent at the given temperature and volume. In other words, Pi = P (T, V ). However, we
have Pi = P (T, vi), which is equivalent, but not identical in the sense that V 6= v. In order
to sum over the He and SF6 pressures for a Dalton formulation, we must demand that both
pure He and SF6 tables represent the same (T, v) states. The way to achieve this is to scale
the specific volume of either the He or SF6. Taking eqn (7) we can formulate a scaling factor
for He volumes

mHevHe = V = mSF6vSF6 ⇒ vHe = vSF6

mSF6

mHe
. (8)

The process used was to generate SF6 states in TIGER and use T and scaled v values to
generate the He states. The column of volume values for the He input was scaled as shown in
eqn (8). A simple summation of the computed He pressures with the SF6 pressure values at
each (T, v) state was then performed.

Refinements to the SESAME table were handled on the basis of levels. A level describes
how small ∆T , ∆v, or ∆P are. Refinement means to reduce the size of the step between
temperatures, volumes, or pressures. The first level is the coarsest level with each level
above it representing a halving of ∆X;X being the thermodynamic state variable of interest.
Since X represents temperature and then volume, respectively, the density of points on the
(T, v) surface would increase by a factor of four, for a 2D problem, with every subsequent
refinement level. From ideal gas calculations the maximum shock temperature was found to
be around 850 K. A SESAME table was generated with TIGER performing the mixing to
estimate mixture deviation from ideal behavior and help set bounds on T , v, and P . The
pure He and SF6 tables were generated for both the Amagat and Dalton mixtures. In order to
provide some bound that could account for higher pressures or temperatures, Tmax = 1500K
was selected. Correspondingly Tmin = 180 K was chosen for the lower temperature bound.
Similarly vmax = 6005 cc/g and vmin = 5 cc/g were chosen for the mixture. The initial
values of ∆T and ∆v were picked to provide relatively coarse spacing without being so large
that many refinement levels were required for convergence. The maximum and minimum
values of each property were held fixed to provide the proper refinement sequence. Table 1
shows the details of the first three refinements for the SESAME files. A convergence study
was performed on the SESAME tables by holding the initial conditions and spatial mesh
constant in 12 different shock tube configurations studied by Trueba Monje and Yoo [11].
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Table 1: SESAME refinement levels.

Level NT ∆T [K] Nv ∆v
[
cc
g

]
1 56 24 121 50
2 112 11.892 242 24.896
3 224 5.919 484 12.422

One of the driver pressures and one of the test section pressures pairwise in Table 2 defines
each of the 12 cases. Shock speeds were compared via absolute relative error of the shock
speeds between the different levels to assess change due to the SESAME refinement. A
relative error less than 1× 10−3 was determined to be sufficiently refined. Results showed
that three refinement levels were sufficient to accurately model shock behavior.

Table 2: Driver and test section pressures [11].

Driver pressure (psia) Test pressure (psia)

146 1.14
166 5.70
186 11.4
– 17.1

3.2 CTH

CTH was selected because it is a hydrodynamics code that is written to study shock physics
with the ability to input tabular EOS, allowing for the study of variations in customized EOS
formulations [1]. The CTH solution scheme is a two-step Eulerian method where the mesh
first deforms with the material in a Lagrangian sense and then is mapped back to the original
Eulerian positions [1]. There are six mesh options in CTH: 1D rectangular, cylindrical, and
spherical coordinates, 2D rectangular and cylindrical, and 3D rectangular coordinates [1].
CTH implements the SESAME tabular EOS format in the form of binary files [1, 17].

CTH models were developed to simulate experiments performed in the shock tube at the
University of New Mexico (UNM) with a mixture of He and SF6 [11]. The availability of
this experimental data allows the numerical simulations to be validated. An input deck was
written to capture the geometry of the UNM shock tube in both 1D and 2D configurations.
Limited preliminary simulations were run in 3D and the results more closely matched
the experimental results. However, 3D simulations did not change the trends observed
between Amagat or Dalton and would not have changed any conclusions drawn from the
2D simulations. Simulations in 3D take significantly longer to run and are currently being
processes for an incremental LHS analysis. Furthermore, since the trends did not change
between 2D and 3D, a suite of 3D simulations was deemed unnecessary for an LHS study. A
schematic image of the shock tube is provided with dimensions in Fig. 1.

The UNM shock tube is a 7.62 cm ID round aluminum tube coupled to a 7.62 cm
square steel tube. The round tube is the high pressure or driver section, while the square tube
comprises the low pressure or test section. The driver section is separated from the test section
via a polypropylene membrane, which is punctured by a pneumatically-driven broadhead
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Figure 1: Notional depiction of UNM shock tube [11].

arrow head on the axis of the driver section [11]. When the membrane is punctured the gas
flow due to pressure imbalance produces a traveling planar shock wave. The test section can
be easily modified to allow for pressure transducers, thermocouples, viewing windows, etc.
due to its square shape (the sides are flat).

The shock wave produces a pressure and temperature spike as it passes through the test
section [18]. Precise spacing of the pressure transducers allows for measurement of both the
shock over-pressure and shock speed. The numerical model captures the center-line of the
tube in the transverse direction in the 2D and 1D cases; thus the transition from round to
square tubing is not modeled. The pressure transducers are replicated by tracers in CTH at
the locations of the pressure transducers in the experiment allowing for a replication of the
measurements made in the experiments. The membrane was not modeled, but assumed to
vanish when it ruptured. Thus gases in the driver and test sections on either side at their
respective pressures and densities were placed in contact at rupture. Just as in the experiment,
in the simulation a shock was formed by the high-pressure gas moving into the low-pressure
He-SF6 mixture. The walls of the tube were implemented via a reflecting boundary condition
on 2, 4, or 6 sides depending on whether the simulation was 1D, 2D, or 3D respectively.

3.3 Mesh convergence via refinement analysis

Convergence with refinement of the spatial grid was also studied. The shock tube is a 7.62 cm
ID × 122 cm (driver) section coupled to a 7.62 cm square × 320 cm (test) section for an
overall length of 442 cm. For level 1 the computational grid was 8 by 406 nodes, which
gives a spacing of ∆x ≈ ∆y ≈ 1.09 cm. The grid size refinements progressed by doubling
the number of nodes in each direction. Table 3 shows the spatial refinement for the first five
levels and corresponding step sizes. Methods detailed in Roache were used to estimate the
convergence of the solution with mesh refinement [19]. Modeling the tube with a level 3
refinement took considerably longer to run but reduced the estimated error only slightly. A
level 4 refinement was not run but a level 5 refinement was performed for all cases as a check.
This was important because while CTH uses second-order-accurate methods for advection

Table 3: Spatial refinement levels.

Level Nh ∆y [cm] NL ∆x [cm]

1 8 1.089 406 1.091
2 16 0.508 812 0.545
3 32 0.2458 1624 0.2723
4 64 0.1210 3248 0.1361
5 128 0.0600 6496 0.0681
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and mesh remap, results are not necessarily second-order-accurate since some numerical
dissipation is present due to adjustments to the first and second coefficients of viscosity
required for numerical stability across the shock [1]. In some sense, the same simulation
is not run twice since the value of the viscosities change based on simulation parameters. In
other words, convergence cannot occur in a Richardson sense where error decreases asO(hp)
with refined mesh size. We found that the relative errors between a level 1, 2, and 3 mesh
simulations were ≤ 10−3 for shock speed, shock pressure, and temperature. Furthermore,
level 5 mesh results did not change from the level 3 results, giving confidence in simulation
convergence. For aforementioned reasons we used the baseline mesh for all LHS studies.

3.4 LHS

The SNL software package DAKOTA was used to generate pseudo-random samples from
probability distributions describing input variables used for the LHS analysis. Starting
with 125 samples, simulations were run, doubling sample size every at each succeeding
refinement, which is a sampling restriction for incremental LHS. When the correlation
magnitude of input variable to shock speed, pressure, and temperature stopped changing
in order and value, the simulation was determined to have converged. The driver and test
sections’ pressures and densities were varied along with the mass fraction of helium in the test
section mixture. Parameter definitions are shown in Table 4 and the resulting shock pressures,
temperatures, and speeds were compared for different values of variables χ1 through χ5 to
determine sensitivity as well as differences between the predictions using Amagat and Dalton
models.

The same case was run with both Amagat and Dalton tables so that they could be directly
compared. Parameter distributions were selected based on an analysis of the experimental
inputs and fitting distributions (normal distributions were bounded at ±3.08σ). The decision
was made to model just one of the 12 driver and test pressure combinations for the LHS
study. Driver pressure 166 psia (1.145× 107 dyne/cm2) and test section pressure 11.4 psia
(7.860× 105 dyne/cm2) were selected. This pressure pair struck a balance between shock
speed (faster with lower test section pressures) and shock pressure (higher with higher test
section pressures). Since the goal is to examine the sensitivity of shock tube simulations
to variations in the independent variables rather than forming a comprehensive response
surface, it was deemed acceptable to model only one case in the middle of driver and
test section pressures. Tables 5 and 6 list variable parameters used for the normal and
triangular distributions, respectively. Distributions were selected based off of minimizing the
negative log likelihood function. However, χ2, χ3, and χ4 exhibited small variation from the
experimental data and were fit with a triangular distribution based off of comparable variation
observed in similar variables.

Table 4: Parameters to be perturbed.

Parameter Symbol Units

Driver pressure χ1 [dyne/cm2]
Test pressure χ2 [dyne/cm2]
Driver density χ3 [g/cm3]
Test density χ4 [g/cm3]
Helium mass fraction χ5 [number]
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Table 5: Normal distribution fits.

Parameter µ σ Low bound High bound

χ1 11.4471×106 13.283×103 11.4062×106 11.4880×106

χ5 0.0267 0.0033 0.0165 0.0369

Table 6: Triangular distribution fits.

Parameter a b c

χ2 77.2213×104 79.9792×104 78.6002×104

χ3 1.8537×10−3 1.8780×10−3 1.8658×10−3

χ4 23.1943×10−4 27.9275×10−4 25.5376×10−4

4 RESULTS
LHS results were analyzed in an incremental fashion using the correlation coefficient

rx,y =
cov(x, y)

σxσy
, (9)

where rxy is the correlation between x and y, cov() is the covariance, and σi is the
ith standard deviation. The base sample set consisted of 125 pseudorandom samples and
the number of samples doubled with every ‘step’. Starting with the base sample set of
125 values the magnitude of the correlation coefficient, r, was computed, against Us, Ps,
and Ts and χ1 through χ5 in a pairwise manner for every doubling. Once the order and
the magnitude of the correlation for the statistically significant variables became constant,
convergence was achieved. Histograms of the correlation of the shock speeds, Us, pressures,
Ps, and temperatures, Ts, to independent variables χ1 through χ5 were plotted to determine
convergence. Simulation results converged after 1000 samples (three doublets) of input
variables (defined in Table 4) were run.

Fig. 2 shows correlation coefficients for the LHS study with Amagat and Dalton QoI 
(Quantities of Interest) in the left and right columns, respectively. It is clear that both the 
Amagat and Dalton models are most sensitive to χ4, test section density, and χ5, helium 
mass fraction. However, which variable has the strongest relationship depends on the QoI. 
The sensitivity of the two models is quite similar in magnitude and ordering of variables, χi, 
based on correlation strength. Only shock pressure shows a significant difference in 
sensitivity between the Amagat and Dalton models in the second-most influential parameter 
χ5, helium mass fraction. We fit the predicted QoI in the LHS study with probability density 
functions (generalized extreme value) for both the Amagat and Dalton models. We then 
calculated the coefficient of overlap [20, 21], Covl, between the two distributions and present 
the results in Figs 3, 4, and 5. Fig. 3 shows that there exists strong agreement between the 
Amagat and Dalton EOS when it comes to predicting shock speed. The overlap between the 
two distributions comprises 80.58% of the simulated values based on the value of Covl. One 
way of thinking about this result is that the distance between the Amagat and Dalton shock 
speed distributions is not large.

Similarly, shock pressure distributions in Fig. 4 show that the pressures also have strong
agreement, as the overlap constitutes 75.27% of the simulated values. While slightly less than
shock speed overlap, the agreement between the two distributions is still significant.
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Figure 2: LHS QoI results run against 1000 samples.

The shock temperature predictions showed the greatest disparity between the two models
as the overlap only accounted for 29.02% of the simulated values. Fig. 5 shows the two
temperature distributions and the region of overlap. This is the largest difference between the
predictions using the Amagat and Dalton models.

5 CONCLUSIONS
LHS results in Figs 3 and 5 show strongest agreement between Amagat and Dalton
models in the shock speed and the poorest agreement in shock temperature. In addition,
the LHS results showed that the shock pressure has the most complex relationship to
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Figure 3: Overlap in shock speed distributions, Covl = 0.8058.
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Figure 4: Overlap in shock pressure distributions, Covl = 0.7527.

the input parameters perturbed. Shock speed and shock temperature were dominated by
variables χ4 and χ5. Predominantly shock pressure, while still dependent on χ4 and
χ5, has stronger relationships with χ1, χ2, and χ3 than either shock speed or shock
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Figure 5: Overlap in shock temperature distributions, Covl = 0.2902.

temperature do. Furthermore the LHS analysis showed that while the Amagat and 
Dalton EOS models were sensitive to essentially the same parameters, it also showed 
that they predict different shock speeds, pressures, and temperatures. As was shown in 
Figs 4, and 5, the models only agree well on 2 out of the 3 shock characteristics. This 
implies that the models cannot simultaneously agree on both pressure and temperature of 
the mixture. This might be expected from different treatments of energy models. When 
modeling gas mixtures undergoing shocks, we conclude that Amagat and Dalton mixing 
models produce significantly different results. We anticipate that comparison with shock 
tube experiments will allow us to determine which model is more accurate.
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