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Abstract

A high accurate finite volume method based on the Moving Least Squares (MLS)
approximation is used for the resolution of compressible Navier–Stokes and
Korteweg (NSK) equation in order to simulate the inception of bubble cavitation,
its detachment and its collapse on the upper surface of a 2D NACA 0015 hydrofoil.
To properly simulate these phenomena, we use the homogeneous equilibrium
model (HEM) whose main assumption is that we consider a diffuse liquid–vapor
interface with thickness. To take account of the surface tension force through the
NSK equations, we need to compute a third derivative of density.

In this study, we present evidence for the effect of surface tension on the
maximum pressure reached during the collapse of a cavitation bubble. It was
noticed that increasing the surface tension inevitably leads to an increase in
the pressure of the collapse. Beyond a certain value of λ (which depends on
velocity, incidence and other parameters) the cavitation bubbles are more difficult
to separate from the main cavity that forms on the upper surface of the hydrofoil.
Keywords: cavitation, homogeneous model, Moving Least Squares, surface
tension, Korteweg tensor, hydrodynamic, Tait equation of state for water.

1 Introduction

Cavitation is a complex phenomenon which is due to the turbulence that reigns
above and coexistence, in a very small space, of two phases (liquid and its
vapor) whose physical properties are radically different. To best simulate this
phenomenon one uses homogeneous equilibrium model (HEM) [1] associated
to compressible Navier–Stokes. Using an equation of state for each fluid phase:
Modified Tait equation of state for the liquid, gas equation of state for the vapor
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and the saturation pressure for the mixture located in the liquid–vapor interface.
The set of equations is solved with a high order finite volume scheme based on
Moving Least Squares (MLS) [2] reconstruction with a numerical flux adapted, as
well, for high and very low Mach numbers. The proposed approach allows the use
of unstructured meshes for complex geometries. The thermodynamic effects are
taken into account through the resolution of the energy equation with subtracting
the latent heat during vaporization.

To take into account the effects of the surface tension, Korteweg source term is
used as developed by Diehl [3].

2 Homogeneous equilibrium model for cavitation flow

Following Koop [1], homogeneous flow theory provides the simplest description
for analyzing multi-phase or multi-component flows. the equilibrium cavitation
model adopted is the one developed by Stewart and Wendroff [4] and Schmidt
et al. [5]. This physical model is based on the assumption that the two-phase
flow regime can be described as a homogeneous mixture of vapor and liquid that
remains in thermodynamic and mechanical equilibrium. This implies that in the
mixture locally the vapor and liquid have equal temperature, pressure and velocity.
This assumption is based on the belief that differences in these three potential
variables will promote momentum, energy, and mass transfer between the phases
rapidly enough so that equilibrium is reached. Throughout the computational field,
a single system of conservation equations are used to describe the flow which is
considered compressible. To close the system, different equations of state can be
used. we chose to use an equation of state for each phase. Equation of Tait for
Liquid and ideal gas for water vapor and a saturation pressure for the mixture
phase. The void fraction of vapor α is used to determine the state of the fluid
according its density. It is defined by equation (1). This dimensionless parameter
is very important because it allows to know the proportion of vapor in the mixture.

α =
Vv
V

=
ρ− ρl,sat(T )

ρv,sat(T )− ρl,sat(T )
(1)

2.1 Formulation of the Navier–Stokes and Korteweg equations

The governing equations are the compressible 2D Navier–Stokes equations in
conservation form here for Cartesian coordinates as

∂U

∂t
+
∂Fx(U)

∂x
+
∂Fy(U)

∂y
= S (2)

The integral formulation of equation (2) is used. Applying the divergence
theorem, for each cell on 2D we have:

∂

∂t

∫ ∫
Ω

U dΩ +

∫
∂Ω

(Fx · nx + Fy · ny) dl =

∫ ∫
Ω

S dΩ (3)
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Here,
U = (ρ ρu ρv ρE)

T and S = (0 Sx Sy 0)
T (4)

U is the vector of conserved variables, S is the source term of Korteweg (see
section 2.2 equation (15)) and (Fx, Fy) the components of flux vector which can
be divided into convective and diffusive flux. Those are given as

Fx = Fx
C + Fx

V (5)

Fy = Fy
C + Fy

V (6)

Fx
C =


ρu

ρu2 + p

ρuv

(ρE + p)u

 , Fx
V =


0

τxx

τxy

uτxx + vτxy − qx

 (7)

Fy
C =


ρv

ρvu

ρv2 + p

(ρE + p)v

 , Fy
V =


0

τxy

τyy

uτxy + vτyy − qy

 (8)

The viscous tensor is defined as

τxx = 2µ

(
∂u

∂x
− 2

3

(
∂u

∂x
+
∂v

∂y

))
(9)

τyy = 2µ

(
∂v

∂y
− 2

3

(
∂u

∂x
+
∂v

∂y

))
(10)

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
(11)

2.2 Surface tension model (the Korteweg tensor)

The HEM model suppose that the density varies continuously through the
interface. In this case, Korteweg term is more appropriate to describe surface
tension. It is introduced as a source term in momentum Navier–Stokes equations,
see (12).

∂ρu

∂t
+∇ · (ρuuT ) +∇p = ∇ · (τ) +∇ · (K) (12)

K is called Korteweg tensor. It is divided into two parts. The Symmetric parts
induces a normal strength opposite to the density gradient. The second part induces
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tangential strength relative to density gradient.

K = λ

[(
ρ∆ρ+

1

2
|∇ρ|2

)
I −∇ρ∇ρT

]
(13)

For the Korteweg tensor we have this useful identity

∇ ·K = λρ∇∆ρ (14)

By developing the expression (14) in 2D, we find density derivatives of order three
(see equation (15)). To correctly estimate these derivatives we need to use high
order of spacial discretization (see section 3.2).

Sx = λρ

(
∂3ρ

∂x3
+

∂3ρ

∂x∂y2

)
Sy = λρ

(
∂3ρ

∂y∂x2
+
∂3ρ

∂y3

)
(15)

2.2.1 Estimation of capillary coefficient λ
The real thickness of liquid–vapor interface is too small to be captured. For water at
295 K the thickness of the interface (noted h) is around 0.9 nm. For usual flow that
we study, mesh size we need to capture the interface is huge. the solution proposed
in this paper is to consider an artificial thickness for the interface (noted h) which
has the same order as the size of one cell of the mesh and from there we determine
a numerical value of λ such as the surface tension forces remains the same. We use
the equation (16) developed by Jamet et al. [6] to compute numerical λ using the
artificial thickness h and the real surface tension σ.

λ =
3

2

σh

(ρl − ρv)2 (16)

2.3 Equations of state

For closure of the system of equations it is necessary to adopt equations of state
that describe each of the three possible states: the liquid state, the vapor state and
the mixture state.

For realistic simulation of phase transition and to preserve the hyperbolic nature
of the system of governing equations we use three different EOS. In the following
the liquid phase is denoted by subscript l, the vapor phase by subscript v, mixture
phase by subscript m and saturation conditions by subscript sat. The speed of
sound c [ms−1] and dynamic viscosity µ [kg/ms] will be defined for each state in
table 1.

For water vapor γv = 1.32. Lv(T0) = 2.753 · 106 J kg−1K−1 represents the
latent heat of vaporization, el0 = 617 J kg−1 is the internal energy at this reference
temperature T = T0 = 273.15 K. Cvv the specific vapor heat at constant volume.
µ0 is the viscosity at temperature T0. Rv is the specific constant of water vapor.
K0 and N are constants which depend on the fluid. For water, K0 = 3.3108 Pa,
N = 7.15, A = 2.414 · 10−5 Pa, B = 247.8 K and C = 140 K. Cvl is the liquid
specific heat at constant volume.
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Table 1: Pressure, energy, viscosity and sound velocity for the three EOS.

Liquid

Pressure pl = K0

[(
ρ

ρl,sat(T )

)N
− 1

]
+ Psat(Tl)

Internal
Energy

el = Cvl(Tl − T0) + el0

Viscosity µl = A · 10B/Tl−C

Sound
Velocity

c20 = (N(p− psat(T ) +K0) /ρ+ p/
(
ρ2Cvl

)
[∂psat(T )/∂T−

(∂ρl,sat(T )/∂T ) (N(p− psat(T ) +K0) /ρl,sat(T )]

Vapor

Pressure pv = (γv − 1)ρvev

Internal
Energy

ev = Cvv(Tv − T0) + Lv(T0) + el0

Viscosity µv = µ0

(
Tv

T0

)( 3
2 )

T0+s
Tv+s

Sound
Velocity

cv =
√
γvRvTv

Mixture

Pressure p = psat(T )

Internal
Energy

ρe = αρv,sat(T )ev(T ) + (1− α)ρl,sat(T )el(T )

Viscosity µm = αµv + (1− α)µl

Sound
Velocity

1/ρc2m = α/
(
ρv,sat(T )c2v

)
+ (1− α)/

(
ρl,sat(T )c2l

)
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Figure 1: The three equation of state at temperature 550 K that describes the three
phases.

We show in figure 1 the system of three equation of state that we use. We choose
to plot it at T = 550 K to see the vapor part which is to small at low temperature.

3 Numerical method

The HEM equations presented in equation (3) are solved employing an
unstructured grid, Moving Least-Squares based of high order finite-volume
method developed in [7] and [8]. Dividing the physical domain in control volumes
Ωi with boundary ∂Ωi. Equation (3) can be considered for each control volume
and the transitory term of the equation is rewritten as

∂

∂t

∫ ∫ ∫
Ωi

UdΩi = Ω
∂Ūi
∂t

(17)

Where Ūi =
∫ ∫ ∫

Ωi
U(x, y)dΩi is the averaged value of the flow variables in

volume control Ωi Flux are supposed constant through each edge of the cell.
Equation (3) becomes

∂Ūi
∂t

=
−1

Ω

[
N∑
k=1

(FC(U)− FD(U)) · nkSk

]
=
−1

Ω
R (18)

FC is the convective flux and FD the diffusive flux.N is the number of cell edges.
Sk the length of the kth edge and R is the residual.

3.1 Variable reconstruction

The FV-MLS method starts from a high-order and highly regular representation
of the solution, obtained by means of Moving Least-Squares approximation. the
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mean idea is to approximate U(x), at a given point x, through a weighted least-
squares fitting of U(x) in a neighborhood of x as

U(x) ≈ Ũ[xI ](x) =
m∑
i=1

pi(x)αi = pT (x)α(xi) (19)

pT is an m-dimensional polynomial basis and α(xi) is a set of parameters to be
determined, such that they minimize the following error functional

J(α(xi)) =

∫
ΓxI

W[xi](y)[U(y)− pT (y)α(xI)]
2dy (20)

Being W[xi] the exponential kernel function which is defined as

W (xj − xI , κ) =
e−( s

c )2 − e−( d
c )2

1− e−( d
c )2

(21)

with s = |xj − xI |, d = max(|x− xI |), c = d
2κ , xI is the center of the stencil and

κ is a shape parameter. Shape function are used to express variable reconstruction
from node value and given as

N[xI ](x)T = p
(
x− xI
h

)T
·
(
PΩxI

·W[xI ](x) · PTΩxI

)−1

·PΩxI
·W[xI ](x) (22)

where h is the smooth parameter. So variables can be approximated by shape
functions as

Ũ[xI ](x) = N[xI ](x)TUΩxI
=
∑
j

N
X

(j)
I

Uj (23)

with UΩxI
the variable vector U of each cell of the stencil.

3.2 Estimation of partial variables derivatives

Using Taylor expansion of U at the vicinity of (I) and equation (23) the variable
derivatives reconstruction is given as

∂αU

∂xα−β∂yβ
(., xI) =

∑
j

∂αN
x
(j)
I

∂xα−β∂yβ
(xI) · Uj (24)

We remark that the approximation is written in terms of the MLS “shape functions”
N
x
(j)
I

, that are depending on the grid. So, in fixed grids they will be computed only
once. the MLS approximation will be used to compute the derivatives needed for
the reconstruction of variables at quadrature points at cell interfaces.
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3.3 Flux discretization

The main idea behind the higher-order formulation of the FV-MLS is the use of
reconstructed variables of a given order of accuracy into the numerical flux, to
achieve the desired order of the scheme. Flux must be estimated at cell interfaces.
The extrapolated left (+) and right (-) states at each edge integration point leads
the solution to be discontinuous. An approximate Riemann solver is used in order
to fit the solution. For the convective flux the SLAU [9] (Simple Low dissipation
AUSM) scheme is used.

Using high order scheme to solve non linear equations induces appearance of
numerical oscillations which causes instabilities. The higher-order accuracy are
obtained by introducing a Venkatakrishnan flux-limited dissipation [10, 11]. The
viscous terms are discretized as simple average between right and left value of the
normal viscous flux.

4 Results

4.1 Numerical simulation of bubble

To see the effect of the Korteweg term in the pressure. Let us see the case of a
vapor bubble of radius R = 0.284 m surrounded by water. For initial conditions,
we put pressure equal to saturation pressure, temperature T = 295 K and the
initial density ρ is expressed in the equation (25). The computational domain is
Ω = [−0.5 0.5]× [−0.5 0.5]

ρ0 = 500.95 + 499.05

(
tanh

(
(d−R)L0

2h

))
(25)

We use the equation (25) to have continuous variation of the density through
the interface (see more in [12]). This give us the dashed curve in figure 2(b). Here
d =

√
x2 + y2(m), L0 = 1 m is the length of the domain and h = (1/64) m is

the length of one cell.
When we set λ = 0 we see in the figure 2(b) that the bubble remains steady.

When we set λ = 0.15625 m7 kg−1 s−2 we get a compression in a bubble vapor
due to the Korteweg forces represented in figure 2(d). We notice that the increasing
of the bubble pressure is followed by an increasing in the density and temperature,
and finally the bubble collapses.

In this example we used intentionally high values of λ to show how the
Korteweg term influences the pressure inside a vapor bubble.

4.2 Cavitating flow around an hydrofoil

We consider the Sauer test case (see [13]) which describe a turbulent cavitating
flow around a NACA0015 hydrofoil at angle of attack α̃ = 6. We use an
unstructured grid with 9578 triangular elements. The velocity V∞ = 12 m/s,
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(a) Bubble shape (b) Pressure variation trough bubble

(c) Pressure variation trough bubble (d) Korteweg force in the interface

Figure 2: Comparison between vapor bubble with λ = 0 (a, b) and λ =
0.15625 m7 kg−1 s−2 (c, d).

(a) (b)

Figure 3: (a) Maximum pressure reached in the collapse (Pa). (b) Pressure
distribution after bubble collapse (Pa).

initial pressure p∞ = 50000 Pa, temperature T∞ = 293 K. This correspond to
a cavitation number of Γ = 0.66. We use SLAU scheme [9] for numerical flux,
with explicit temporal discretization which has a fixed time step of 10−8 s. The
chord of the hydrofoil c = 0.15 m and the domain is an O mesh which radius
R = 5 m. λ is computed from σ using equation (16) where L0 = chord (0.15 m)
and h = average of

√
cell area around the hydrofoil.
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Figure 4: Evolution of pressure peak (Pa) with the surface tension σ (N/m).

Let us focus on the collapse of the first bubble of vapor that occurs around the
fourth millisecond. To be sure to capture the maximum pressure we make a backup
every 10−6 s. For different value of the surface tension σ we trace maximum
pressure showed in figure 4.

The graph 4 shows that the increase in surface tension leads to an increase of the
pressure peak. The effect of surface tension start to be significant at σ = 10−2 N/m.
On the other hand the effect of surface tension appears in the final stage of collapse
when the bubble reached a size of the order of a millimeter or less.

5 Conclusion

In this paper we presented a cavitation model that is homogeneous equilibrium
model. To take into account the surface tension we used the Navier–Stokes and
Korteweg compressible unsteady. A high order Finite Volume method based
on Moving Least Squares approximation is used with unstructured mesh. An
MLS reconstruction is used for the spatial discretization of variables and their
derivatives. we used an MLS reconstruction in order to determine the third
derivatives of density in the Korteweg term. The first case to test validated the
digital schematic for the consideration of the surface tension. Trough the first
computation, we see how the surface tension forces directly influence the pressure
and the temperature in vapor bubble by generating surface force in the interface.
A second series of calculation was performed to determine the effect of the
consideration of the surface tension on the collapse of the cavitation bubbles on the
upper surface of a hydrofoil. We noticed that an increase of surface tension causes
a direct increase in the peak pressure reached during the collapse. this means that
for the study of cavitation including the collapse it is best not to neglect the surface
tension.

 WIT Transactions on Engineering Sciences, Vol 89,
 www.witpress.com, ISSN 1743-3533 (on-line) 

© 2015 WIT Press

434  Computational Methods in Multiphase Flow VIII



References

[1] Koop, A.H., Numerical simulation of unsteady three-dimensional sheet
cavitation. University of Twente, 2008.

[2] Khelladi, S., Nogueira, X., Bakir, F. & Colominas, I., Toward a higher
order unsteady finite volume solver based on reproducing kernel methods.
Computer Methods in Applied Mechanics and Engineering, 200(29), pp.
2348–2362, 2011.

[3] Diehl, D., Higher order schemes for simulation of compressible liquid-vapor
flows with phase change. Ph.D. thesis, Universitätsbibliothek Freiburg, 2007.
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