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Abstract 

For high temperature liquids where the bubble growth is heat diffusion 
controlled, the performance of a thermal non-equilibrium bubble dynamics 
model is analyzed. The model is based on thermal energy balances of a single 
bubble within a fixed mass of fluid (elementary cell). A constant mass of 
undissolved air is considered in the bubble. A spatially homogeneous 
temperature for both the vapor–air mixture within the bubble interior and the 
surrounding liquid is assumed. The model accuracy is compared to the well-
established Rayleigh–Plesset equation in combination with the heat transfer 
model by Plesset and Zwick. The results of both models agree very well. Due to 
the embedding of a bubble in a finite amount of surrounding liquid and its 
harmless numerical properties, the model is assumed to be very suitable for the 
straightforward implementation in 3D-CFD codes as a cavitation model which 
will be carried out in future work. 
Keywords: thermal non-equilibrium, superheated liquids, thermally controlled 
bubble dynamics, multi-phase flow, cavitation model. 

1 Introduction 

Cavitation by local fluid evaporation and gas release has a major impact on  
the operation and durability of hydraulic machinery and systems because of the 
adverse effects it has on the performance, because of the noise it creates as well 

 WIT Transactions on Engineering Sciences, Vol 89,
 www.witpress.com, ISSN 1743-3533 (on-line) 

© 2015 WIT Press

doi:10.2495/MPF150331

Computational Methods in Multiphase Flow VIII  387



as the damage it can do to the nearby solid surfaces. The appearance of 
cavitation in hydraulic systems is often reduced to the study of the dynamics of a 
single bubble. Besides the other bubble characteristics, its growth is of utmost 
significance since the maximum bubble size has a strong impact on the 
maximum pressure peak after its collapse. The most accurate mathematical 
description of the bubble dynamics in a spherical coordinate system demands the 
numerical solution of the system of mass, momentum, and energy conservation 
equations, temporally and spatially resolved, see Nigmatulin [1], Beylich [2], 
Matsumoto and Takemura [3]. Due to the high numerical effort of these studies, 
approximate numerical and theoretical solutions with simplifying assumptions 
for the bubble growth have been developed [4–10]. The results from these 
investigations suggest that the early stage of bubble growth is limited primarily 
by momentum interactions between the liquid and the bubble. As the bubble 
grows, the thermal diffusion influence becomes more important until it 
dominates the growth rate which is bounded by the heat diffusion in the liquid. 
For the thermally-controlled growth regime, the numerical and theoretical results 
are in a good agreement with the early experimental data of Dergarabedian [11] 
for liquids with low thermal conductivities and low superheats. 
     The exact determination of the thermal term in the Rayleigh–Plesset equation 
[12, 13] requires the solution of the heat diffusion equation which leads to 
significant difficulties due to its nonlinearities. For reduction in the complexity 
of the bubble growth problem, Plesset and Zwick [4], Forster and Zuber [5], and 
Fritz and Ende [7] consider two limiting regions of bubble growth. Plesset  
and Zwick [4] and Forster and Zuber [5] independently determined that the 
bubble growth is thermally controlled by the rate of energy which is transferred 
through the liquid to the vapor-liquid interface. By the assumption of a thin 
thermal boundary layer in the liquid surrounding the bubble, an approximate 
solution for the energy equation was obtained by Plesset and Zwick [4]. This 
solution was shown to agree very well with the experimental results provided by 
Dergarabedian [11] for water with low superheats at atmospheric pressure. 
     The solution of the Rayleigh–Plesset equation [12, 13] by the use of the 
Plesset–Zwick [4] approximation method shows that a first critical time ݐ௖ଵ 
exists, above which the thermal term starts to dominate the solution (thermally 
controlled region), and below that, the Rayleigh–Plesset equation may be 
approximated by the linear Rayleigh equation (inertially controlled region) [13]. 
For details see Brennen [14]. Mikic et al. [15] derive an interpolation formula for 
predicting both inertially and thermally controlled regions by assuming that the 
bubble growth rate is limited by the Rayleigh [13] analytic solution for small 
time values and the approximation by Plesset and Zwick [4] as time approaches 
infinity. 
     In common 3D-CFD cavitation models [16–18], the mass transfer rate in the 
transport equation for the vapor volume fraction is determined by bubble 
dynamics models that are based on a simplified Rayleigh–Plesset equation. Since 
the non-linear term in the Rayleigh–Plesset equation is the root of the numerical 
difficulties, its asymptotic inertia-driven approximation, the simple Rayleigh 
equation [13] is utilized. The Rayleigh equation neglects, besides second order 
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non-linear inertia term, thermal effects and therefore seems to be an unjustified 
simplification in particular for high-temperature fluids where thermal effects 
dominate the bubble growth. Therefore, in the present work we adopt a 
cavitation model by Iben [19, 20] which is based on pure thermo-dynamical 
considerations and considers thermal non-equilibrium. Due to the skip of the 
highly non-linear Rayleigh–Plesset equation by assuming mechanical 
equilibrium, this model is numerically harmless and nevertheless accurate for 
bubble dynamics problems that are dominated by heat transfer effect. Due to the 
definition of an elementary cell of fixed fluid mass, consisting of a gas–vapor 
bubble and surrounding liquid with spatially uniform but temporally varying 
temperature, we assume that the model is preferred for an implementation in a 
3D-CFD solver since it essentially mimics the energy balances in a 
computational cell, assuming a fixed mass inside the elementary cell. 
     In the present study, a first evaluation of the single-bubble model by Iben [19, 
20] is performed on bubble growth in high-temperature superheated liquids. We 
compare its results with results of the approach by Plesset and Zwick [4]. In 
section 2 the model formulation of the thermodynamic non-equilibrium model 
[19, 20] is summarized. In the subsequent section 3, the results are presented and 
compared to the analytical results of Mikic et al. [15], the approach by Plesset 
and Zwick [4] and experimental results of Dergarabedian [11] for bubble growth 
dynamics in superheated water with different amounts of superheat values. The 
paper is finalized with the conclusions in section 4. 

2 Model summary and implementation 

2.1 Model formulation and assumptions 

The model has been introduced by Iben [19, 20]. We summarize the model 
derivation and assumptions here quite briefly and refer to it as “thermal non-
equilibrium model” in what follows. 
     The model is based on the definition of an elementary cell (see Figure 1) with 
a constant amount of mass ࡱ࢓ which contains a single spherical bubble. The 
bubble contains perfectly mixed vapor and gas with mass ࢂ࢓ and ࡳ࢓ and is 
surrounded by liquid with the mass of ࡸ࢓. The gas mass ࡳ࢓ is constant 
corresponding to the assumption that gas diffusion is very slow in comparison 
with the evaporation process. The mass fraction of vapor ࣆ and of undissolved 
gas ࢞ within the bubble are defined by ࣆ ൌ ࢞ and ࡱ࢓/ࢂ࢓ ൌ  .ࡱ࢓/ࡳ࢓	
Assuming an ideal gas, Dalton’s law for both, air and vapor is applied and yields 
a relation between partial pressure of vapor and gas, ࢂ࢖ and ࡳ࢖, and the bubble 
temperature ࡮ࢀ and its volume ࢂ. Mechanical equilibrium is assumed on the 
bubble wall. The Clausius–Clapeyron equation relates the vapor partial pressure 
to the bubble temperature for saturated conditions. The mass density of the 
bubble interior is calculated based on the perfect gas mixture law. For the entire 
elementary cell, the balance of volume change work and inner energy together 
with the assumption of mechanical equilibrium yield an ordinary differential 
equation for the spatially homogenous liquid temperature [20 ,19] ࡸࢀ. 
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Figure 1: Elementary cell. 
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     ݄௩ and ݄௅ are the specific enthalpies of the vapor and liquid. ܵ is the liquid 
surface tension and ܿ௣ீ and ܿ௣௩ are the specific heat capacities of gas and vapor. 
௅ܶ is assumed to be dependent on time only. This assumption corresponds to the 

neglection of the thermal boundary layer. The energy balance of the bubble 
relates the temporal change of inner energy to the volume change work and the 
heat transfer. The heat flux ሶܳ ஻ from the liquid to the bubble is approximated in 
dependence with the temperature difference ሺ ௅ܶ െ ஻ܶሻ by the definition of the 
heat transfer coefficient ߙ௪: 

ሶܳ ஻ ൌ ௪ܱ஻ሺߙ ௅ܶ െ ஻ܶሻ                                       (2) 
     ܱ஻ is the bubble surface area. It is assumed that there is no relative velocity 
between liquid and bubble. Therefore, the convective heat transfer is neglected, 
and heat is only transferred by conduction within the liquid. The time-dependent 
heat transfer coefficient ߙ௪ is determined by equating the heat flux 
approximation in eqn (2) and the heat flux determined by the conduction within 
the liquid, proportional to the liquid temperature gradient at the interphase. The 
temperature gradient is approximated according to Epstein and Plesset [21], who 
derived an analytical relation which has also been used by Iben [20] and Klein 
and Iben [22]. As a result, the relation for ߙ௪ is as follows: 

௪ߙ ൌ
ఒಽ
௥ಳ
൅ ට

ఘಽ௖ಽఒಽ
గ∆௧ೖ

                                              (3) 

and is a function of the thermal conductivity of liquid ߣ௅, the bubble radius ݎ஻, 
the liquid density ߩ௅, the specific heat capacity of liquid ܿ௅, and the time 
difference between the current time of simulation ݐ, and the start time of 
cavitation ݐ௞, ∆ݐ௞ ൌ ሺݐ െ  ௅ߙ ௞ሻ. Since the liquid volume expansion coefficientݐ
is small, we assume for the specific heat capacity ܿ௩௅ ൎ ܿ௣௅ ൎ ܿ௅. Finally, from 
the energy balance on the bubble wall, an ordinary differential equation for the 
vapor mass fraction ߤ is derived [19, 20]: 
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     With the geometrical relation between the bubble mass ݉஻ and radius ݎ஻ the 
governing equation for the bubble radius is as follows: 
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     By applying the energy balances on both, the entire elementary cell and on 
the bubble, with eqns (1), (4) and (5) together with the heat transfer 
approximation eqns (2) and (3) as well as thermodynamic property relations a 
closed set of time-dependent ordinary differential equations (ODEs) is obtained, 
assuming that the bubble temperature ஻ܶ is known. This set of ODEs can be 
solved with common numerical methods. The temperature difference between 
liquid and bubble ௅ܶ െ ஻ܶ is considered to be the driving mechanism for bubble 
growth. While ௅ܶ is determined by eqn (1), the approximation for ஻ܶ is explained 
in the subsequent section. 

2.2 Approximation of the bubble temperature 

The bubble temperature ஻ܶ is calculated in dependence on the liquid pressure ݌௅ 
assuming that the liquid is in saturation state: 

஻ܶ ൌ ௌܶ௔௧ሺ݌௅ሻ                                                     (6) 
     In Figure 2, the performance of the model is illustrated for a smooth liquid 
pressure variation with the initial conditions ௅ܶ,଴ ൌ 354.5	K, ݎ஻,଴ ൌ 1.015 ൈ
10ିସ	m and ߤ଴ ൌ 0. The cavitation simulation starts as soon as the pressure 
drops below the saturation pressure at the prescribed liquid temperature. The  

 

Figure 2: Bubble and liquid temperature, vapor mass fraction and bubble 
radius for a smooth variation of the liquid pressure. 
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ODE for ߤ, eqn (4), contains the temporal liquid pressure gradient as driving 
term besides the temperature difference, with opposite sign. Therefore, both 
driving mechanisms, liquid pressure gradient and temperature difference 
between liquid and bubble, compensate at the beginning of the calculation while 
for later instance the temperature difference dominates and causes the bubble to 
grow. A thermal non-equilibrium behavior is figured out because the liquid 
temperature, vapor mass fraction and bubble size respond with a time delay to 
the driving temperature difference between liquid and bubble. 

2.3 Implementation of the liquid pressure evolution for superheated liquid 

While the test case discussed in section 2.2 and illustrated in Figure 2 represents 
the principle performance of the thermal non-equilibrium model, bubble growth 
in superheated liquids is the test case of main interest. To implement the 
superheat of the liquid in the simulation, the liquid pressure drops from its initial 
value ݌ௌ௔௧൫ ௅ܶ,଴൯ instantaneously to its final value ݌௅,ஶ. This pressure difference 
ௌ௔௧൫݌ ௅ܶ,଴൯ െ  ௅,ஶ corresponds to the nominally prescribed superheat value. In݌
our investigations, ݌௅,ஶ is the atmospheric pressure with a saturation temperature 
ௌܶ௔௧൫݌௅,ஶ൯ ൌ100 °C. We approximate the pressure drop in the thermal-non 

equilibrium model by a short delay time ߬: 
ሻݐ௅ሺ݌ ൌ ௅,ஶ݌ ൅ ൫݌ௌ௔௧൫ ௅ܶ,଴൯ െ ௅,ஶ൯݌ expሺ

ି௧

ఛ
ሻ                         (7) 

     The value of the delay time ߬ must not be exactly zero since the prescription 
of ݌௅ሺݐሻ must be a steady function. Preliminary calculations have revealed that 
for ߬	 ൑ 10ି଺ ൈ  ௖ଵ, the solution does not change any more. Therefore, allݐ
presented results are obtained by ߬ ൌ 10ି଺ ൈ  ݐ݀/௅݌݀ ௖ଵ. The pressure gradientݐ
comprises a very high value at the beginning of the simulation and vanishes 
speedily. For later instances, the solution is therefore dominated by the 
temperature difference rather than the pressure gradient as driving term. 

2.4 Initial conditions and thermo-physical properties 

Besides the initial values for ௅ܶ,଴, ߤ଴ and ݎ஻,଴ for the ODE solver, the initial 
liquid mass ݉௅,଴ and the elementary cell mass ݉ா need to be known and are 
determined as follows. From Clausius–Clapeyron equation which relates the 
vapor partial pressure to the bubble temperature for saturated conditions,  
the initial partial pressure of vapor ݌௩,଴ within the bubble is known. Due  
to the assumption for the bubble temperature eqn (6), the saturation pressure 
equals the initial liquid pressure ݌௅,଴ ൌ ௌ௔௧൫݌ ௅ܶ,଴൯ in our model. As a 
consequence, the partial pressure of gas follows from mechanical equilibrium to 
଴,ீ݌ ൌ  ଴ as well as the Dalton’s law for both,ீ݌ ௩,଴ and݌ ஻,଴. With knownݎ/2ܵ
gas and vapor, the initial masses of vapor and gas within the bubble, ݉௏,଴ and 
݉ீ,଴ are determined. The definition of gas mass fraction ݔ, section 2.1, together 
with its prescribed value yields the mass of the elementary cell ݉ா. The mass 
balance relations in the bubble and in the elementary cell yield the initial amount 
of liquid mass ݉௅,଴. 
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     The initial value of vapor mass fraction is determined by its definition in 
section 2.1. The initial mass densities of vapor and air are calculated by the 
respective mass and the bubble volume. The initial bubble mass density ߩ஻	is 
determined by the perfect gas mixture rule. A constant gas mass fraction ݔ ൌ
10ି଼ is prescribed for each simulation if not otherwise stated. 
     For the thermo-physical property data of water, the polynomial approximation 
relations regarding the Helmholtz energy of substances have been used [23]. The 
liquid and vapor phase are assumed to be in saturated state. The data is a priori 
calculated by the software “Fluidcal” [24] in dependence on the liquid pressure 
and stored in looked-up tables. Although it is small, in eqn (1), the volume 
expansion coefficient ߙ௅ is evaluated according to [20] in dependence on the 
partial derivatives ሺ߲݌௅ ߲ ௅ܶ⁄ ሻఘಽ and ሺ߲݌௅ ⁄௅ߩ߲ ሻ்ಽ which can directly be 
determined by the property software [24]. 

2.5 Numerical implementation 

The MATLAB software [25] is used, which is a very powerful and matrix 
oriented high-level programming language. MATLAB contains several solvers 
for numerical integration of ordinary differential equations. We select the  
solver ode15s because of its accuracy and stability even for stiff ODEs. By the 
use of state space model principle, an ݊௧௛ order explicit ordinary differential 
equation is split to ݊ first order ordinary differential equations. The input 
variables are	the liquid pressure ݌௅ሺݐሻ and its temporal change ݀݌௅ ⁄ݐ݀ . 

3 Results and discussion 

The considered test case, bubble growth in a high-temperature superheated 
liquid, is adopted from the measurements of Dergarabedian [11]. The first 
critical time ݐ௖ଵ is very low due to the high nominal temperature T = 100°C, so 
that the bubble growth is essentially thermally-controlled. The superheat varies 
between ∆ ௦ܶ.௛ ൌ ∆ and ܭ1.4 ௦ܶ.௛ ൌ  cf. Table 1. Experimentally obtained ,ܭ5.3
bubble growth data are available from [11]. 

Table 1:  Initial values for thermally controlled bubble growth. 

Symbol Unit Case 1 Case 2 Case 3 Case 4 Case 5 
∆ ௦ܶ.௛ [Ԩ] 1.4 2.1 3.1 4.5 5.3 
௅ܶ,଴  [Ԩ] 101.4 102.1 103.1 104.5 105.3 
 ሾܲܽሿ 5168 5834 11539 17394 20730 	݌∆
௖ଵ  [ൈݐ 10ି଻	s] 3.04 5.66 8.78 10.33 11.59 
௩ܲ,଴ [Pa] 106492 109158 112863 118718 122054 
ܲீ ,଴ [Pa] 5332 7501 11437 15458 22265 
݉௩,଴  [ൈ 10ିଵସ	kg] 2.75 1.00 0.29 0.12 0.04 
݉ீ,଴	 [ൈ 10ିଵହ	kg] 2.21 1.11 0.47 0.25 0.12 
݉ா [ൈ 10ି଻	kg] 2.21 1.11 0.47 0.25 0.12 
஻,଴  [ൈݎ 10ିହ	m] 2.20 1.56 1.02 0.75 0.52 
 ሾൈ	 ଴ߤ 10ି଼ሿ 12.43 9.06 6.14 4.78 3.41 
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     The bubble at rest with initial radius ݎ஻,଴ corresponds to a nucleus and is in 
unstable equilibrium at the liquid pressure ݌௅,ஶ of one atmosphere. This unstable 
equilibrium is implemented in the simulation by a sudden decrease of initial 
pressure by ∆݌ ൌ ௌ௔௧൫݌	 ௅ܶ,଴൯ െ  ௅,ஶ as described in section 2.3. First, the݌
influence of the variation of the amount of liquid surrounding the bubble is 
studied (section 3.1), then the non-equilibrium model results are compared to the 
data and other simulation models (section 3.2). 

3.1 Bubble growth in a finite mass of fluid 

Case-3 according to Table 1 is chosen for an analysis of the bubble growth for a 
variation of the elementary cell mass. Since the initial bubble conditions are kept 
unchanged, this corresponds to a variation of the initial liquid mass. In order to 
realize a variation of the initial liquid mass alone, for the gas mass fraction ݔ 
three different values are chose, i.e. ݔ ൌ 10ିଽ,  ݔ ൌ 10ି଼ (this is the reference 
according to Case-3 in Table 1) and ݔ ൌ 10ି଻. This rise of ݔ corresponds to a 
decrease of elementary cell mass from ݉ா ൌ 0.4707 ൈ 10ି଻݇݃ to ݉ா ൌ
0.4707 ൈ 10ିଽ݇݃. All other initial conditions are kept constant. From Figure 3 it 
is obvious that the bubble size (Figure 3(b)) and accordingly the vapor mass 
(Figure 3(c)) do not grow in an unlimited way but approximate an equilibrium 
value. This ebbing of bubble growth is due to the decrease of the initial liquid 
temperature to the bubble temperature (Figure 3(a)) in the course of time so that 
the driving term in eqn (4) vanishes. Of course, the diminishing strength of the 
driving temperature difference is due to the assumption that the elementary cell 
contains a fixed amount of mass and is adiabatic. 

Figure 3: Bubble growth for case-3 and varying elementary cell mass.  
(a) liquid temperature; (b) radius; (c) vapor mass. 

     As a limiting case of an infinite amount of surrounding liquid, the liquid 
temperature ௅ܶ is kept constant by switching off the ODE for ௅ܶ, eqn (1). This 
approximation corresponds to an inexhaustible source of energy for bubble 
growth and to the assumptions made by Plesset and Zwick [4]. As it is 
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discernible from Figure 3, the results with switched-on ODE for ௅ܶ approach this 
limiting case with increasing elementary cell mass. 
     In order to assess the performance of the thermal non-equilibrium model for 
the transition between inertia and thermally controlled growth we choose a 
dimensionless illustration of the bubble growth according to Mikic et al. [15]. In 
Figure 4, the solutions for varying elementary cell mass are compared to the 
analytical solution of Mikic et al. [15] who assume a zero initial radius. As 
expected, within the transition phase between the inertia- and thermally-
controlled region, the numerical results approach the analytical solution which 
confirms that the non-equilibrium model is based on assumptions (mechanical 
non-equilibrium, heat transfer as driving term) that are essentially valid in the 
thermally controlled regime. 
 
 

 

Figure 4: Bubble growth for case-3 in the transition regime. 

3.2 Application on thermally-controlled growth 

The results of the non-equilibrium model are compared to the analytical solution 
by Mikic et al. [15] and the approximation method of Plesset and Zwick [4] for 
five superheat levels, cases 1–5 according to Table 1. The initial conditions of 
both, Plesset–Zwick and non-equilibrium model are equalized. The liquid 
temperature in the case of Plesset–Zwick theory is a constant value and does not 
change during the bubble growth, corresponding to a single bubble growth in a 
large amount of liquid whose mean temperature does not significantly drop due 
to evaporation and bubble growth. In order to mimic this situation by the thermal 
non-equilibrium model, the liquid temperature ODE, eqn (1) is switched off and 
a constant value of ௅ܶ ൌ ௅ܶ,଴ is applied. We consider a relatively long time 
interval of t up to 0.015 sec, so that the bubble growth is practically only 
controlled by heat diffusion within this time interval. In Figure 5 the results of 
the non-equilibrium model are compared to the ones by the Plesset–Zwick model 
[4] and the experimental data by Dergarabedian [11]. 
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Figure 5:
 

Bubble radius growth for cases 1–5.
 

     The simulation results are rather close to each other. Since several distinct 
bubbles have been investigated in the experiment, a significant scatter in 
experimental data is present. This scatter is illustrated by star symbols whose 
deviation is in the same order of magnitude as the difference of the simulation 
results to the experimental mean value. Furthermore, Dergarabedian [11] 
specifies an uncertainty in the time instant where the bubble starts to grow of 
0.001 sec. Taking this into account, we conclude that the agreement between 
simulation data and experiment is good. In particular, the thermal non-
equilibrium model performs equally well as the well-established model by 
Plesset and Zwick [4]. 

4 Conclusions 

We have analyzed the thermal non-equilibrium model of Iben [19, 20] for bubble 
growth in superheated liquids and have shown that it performs equally well as 
the solution by Mikic et al. [15] and Plesset and Zwick [4] in the heat diffusion 
controlled range. Therefore, for superheated liquids at high temperatures, where 
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the critical time is very small so that thermal effects dominate the bubble growth 
for almost the entire growth process, the non-equilibrium model is an equivalent 
alternative to Rayleigh–Plesset based models as the Plesset–Zwick [4] model. 
The advantage of the non-equilibrium model will be revealed if it is 
implemented in 3D-CFD codes. The embedding of a bubble in a finite amount of 
surrounding liquid and the harmless numerical properties are expected to be 
advantageous. The definition of a fixed elementary cell mass may mimic a 
computational CFD cell, so that the model is assumed to be well suitable for 
a straightforward implementation in 3D-CFD codes which will be done in future 
works. Of course, the model will need to be reformulated for a fixed 
volume instead of a fixed mass to be consistent with common finite volume 
approximations of the 3D governing equations. 
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