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Abstract 

Mechanistic regime-transition functions, where one or more physical arguments 
are used to describe transitions, are often used to identify equilibrium multiphase 
flow regimes. The mechanistic models for two-phase, gas–liquid pipe flow rely 
on one or more closure relations, most of which have been fit to experiments of 
air and water systems. However, these models are often applied to problems in 
the oil and gas industry, which span a very broad parameter space of fluid 
properties. Sensitivities of the one-dimensional, two-phase, gas–liquid, 
mechanistic models for dispersed-bubble pipe flow are investigated over a 
parameter space typical of that observed in the oil and gas industry. This spans 
several orders of magnitude in gas density, gas and liquid viscosities, and surface 
tension, in addition to large ranges in superficial gas and liquid velocities, pipe 
diameter, and pipe inclination angle. Dispersed-bubble regime identification is 
most sensitive to the superficial velocities, with secondary sensitivities to 
densities and pipe-inclination angle in special cases. 
Keywords: gas–liquid, dispersed bubble, regime identification, mechanistic. 

1 Introduction 

Multiphase regime identification is often accomplished via mechanistic regime-
transition functions, where one or more physical arguments describe each 
possible regime transition. The transition functions are derived from a 
combination of: i) balances of dominant terms from the momentum equations, ii) 
linear-stability theory for the growth of unstable modes, and iii) simple 
geometric considerations related to the flow patterns. The mechanistic models 
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identify the equilibrium regime and rely on one or more closure relations. 
Typically, these have been based on experiments of air and water systems near 
atmospheric pressure and room temperature. However, the models have been 
widely applied in the oil and gas industry to problems that span a much broader 
parameter space of fluid properties and operating conditions [1]. For example, in 
hydrocarbon production, it is possible to encounter flows where the gas has a 
higher viscosity than the liquid phase, or where the gas and liquid phases have 
similar densities. 
     In mechanistic modelling, consideration of the full governing mass, momen-
tum, and energy equations are purposefully avoided because of the prohibitively 
high cost of their numerical solution relative to the time constraints considered 
acceptable for simulations in the oil and gas industry [2]. Still, several 
mechanistic arguments must typically be satisfied for a regime to be stable and, 
therefore, identified. Thus, significant effort has been committed to improving 
various closure relations for regime identification at all inclination angles to 
yield accurate, but efficient, models [3–7]. 
     Here, the regime-identification sensitivities of the two-phase, gas–liquid, 
pipe-flow mechanistic models for dispersed-bubble flow are investigated over a 
parameter space typical of that in the oil and gas industry. Dependencies over 
several orders of magnitude in gas density, liquid viscosity, superficial gas and 
liquid velocities, surface tension, and pipe diameter, as well as pipe-inclination 
angle (flow direction) are spanned. The sensitivities of regime identification to 
the closure relations in this broad space are investigated. 

2 Problem statement 

The unified two-phase, gas–liquid, mechanistic pipe-flow model is capable of 
identifying eight equilibrium regimes, including dispersed bubble, bubbly 
(sometimes called bubble), slug, elongated bubble, churn, annular, and stratified 
smooth and stratified wavy flow at any inclination angle [7]. The total number of 
distinct flow regimes and their exact characteristics are not universally agreed 
upon by researchers, but these eight regimes tend to encompass all others, with 
the possible exceptions of mist and froth. An example of a complete regime map 
is given as a reference in 5 Results and discussion. 
     Here, only the identification of dispersed-bubble flow is considered. The 
regime-transition functions for dispersed-bubble flow were formulated in stages 
and include a buoyant creaming mechanism in horizontal flow [3], maximum 
packing factor and deformation-resistant limit mechanisms in vertical flow [4], 
and finally, a model that considered the impact of intermediate pipe-inclination 
angles [6]. These are summarized in the unified model given by Barnea [7]. 

2.1 Model assumptions 

The mechanistic models considered are one-dimensional simplifications of 
inherently three-dimensional flows. Furthermore, only the equilibrium regime is 
identified, allowing an inherently transient problem to be treated as locally quasi-
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steady. These simplifications greatly reduce the computational modelling cost, 
but also require many simplifying approximations and closure relations. For 
example, in these one-dimensional models, counter-current flow (or counter 
flow) is not allowed, and the net volumetric flows of liquid and gas must be in 
the same direction. This allows the consideration of only positive superficial 
velocities, with the pipe-inclination angle specifying the flow direction. 

2.2 Nomenclature 

The space of independent parameters that determine the equilibrium two-phase, 
gas–liquid regime are given in Table 1. Single-phase regimes are not considered. 

Table 1:  Independent parameter space and limits on values considered for 
regime identification in two-phase, gas–liquid pipe flow. 

Symbol Description Minimum Value Maximum Value Units 

L  liquid density 600.0 1100.0 (kg/m3) 

G  gas density 0.10 599.0 (kg/m3) 

L  liquid (dynamic) viscosity 2.0×10-5

(= 0.02 cP)
5.0

(= 5000.0 cP) (Pa-s) 

G  gas (dynamic) viscosity 5.0×10-6

(= 0.005 cP)
5.0×10-3

(= 5.0 cP) (Pa-s) 

SLv  superficial liquid velocity 10-3 300.0 (m/s) 

SGv  superficial gas velocity 10-3 300.0 (m/s) 

L  surface tension of liquid in 
contact with gas

0.0001 
(= 0.1 dyne/cm)

0.1
(= 100.0 dyne/cm) (N/m) 

D  pipe diameter 0.02 2.0 (m) 

  pipe-inclination angle, 
measured from horizontal

-�/2
(= -90°)

�/2
(= 90°) (rad) 

r  pipe roughness 0.0 0.05×D (m) 

 
The gas-void fraction, G , is the cross-sectional area occupied by gas, GA , 

divided by the entire cross-section of the pipe, A , given by /G GA A  . The 

liquid holdup is the fraction of the cross-section occupied by liquid, /L LH A A , 

where, 1G LH   . The superficial velocities are defined in terms of the true 

average velocities, Lv  and Gv , as SL L Lv v H  and SG G Gv v  , or in terms of the 

volumetric flow rates of gas and liquid, LV  and GV  , as / /SL L L Lv v A A V A    and 

/ /SG G G Gv v A A V A   . The average mixture velocity, / / /M G Lv V A V A V A     , 

can be written as M SG SLv v v  . 

3 Regime-transition functions 

The full set of gas–liquid regime-transition functions were first unified by 
Barnea [7] who co-developed many of them. Here, the dispersed-bubble regime-
transition functions (or inequalities) for gas–liquid pipe flow are rigorously 
critiqued. This is not with the intention of undermining the value of this 
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foundational and insightful work, but rather to remind users of their possible 
limitations. For a detailed review of the entire body of mechanistic multiphase 
modelling for all two-phase flow regimes, the reader is referred to Shoham [8]. 
The regime-transition functions are based on semi-mechanistic and mechanistic 
arguments about the flow and include geometric constraints, balances of 
dominant terms, linear-stability arguments, and physical arguments. The 
resulting regime maps are quasi-equilibrium – the duration for transition to occur 
is not considered. 

3.1 Distinction between dispersed and bubbly bubbles 

Dispersed-bubble flow is defined by discrete spherical gas bubbles in a liquid 
matrix, where the bubbles do not interact. It is assumed that the trajectories of 
dispersed bubbles are determined only by the liquid matrix; in equilibrium, they 
are simply convected with the liquid and do not slip relative to it. Note that this 
can be roughly true in an equilibrium sense even when the distribution of 
bubbles is not uniform, such as in horizontal flow where larger dispersed bubbles 
are more likely found toward the top of the pipe, but where the buoyant force is 
still sufficiently small that it does not cause the bubbles to interact. 

3.2 Transition to and from dispersed-bubble flow to all other regimes 

If the dispersed bubbles begin to interact, either by modifying the trajectories of 
neighbouring bubbles, by coalescence, or if they deform, the regime is no longer 
dispersed-bubble. The regime-transition functions that identify dispersed-bubble 
flow are presented in the subsequent sections. 

3.2.1 Maximum-allowable dispersed-bubble diameter 
The mechanism of bubble breakup is taken to be a balance between turbulent 
fluctuations and surface-tension forces [9, 10]. This leads to the prediction of a 
maximum dispersed-bubble (DB) diameter, ,maxDBd , that is stable (break-up 

resistant) for a specified level of turbulence given by: 
1/2 3/5 2/53

,max

2
4.15 SG L DB M

DB vert
M L

v f v
d k

v D




      
        
       

,                    (1) 

where vertk  was determined to be 0.725  by Hinze [9] who fit to the data of Clay 

[11] for various fluid combinations, including water and kerosene, and DBf  is the 

Fanning friction factor based on the superficial mixture velocity and various 
closure relations for the viscosity and density. It should be noted that the data 
used to fit vertk  is from flow between coaxial cylinders, with the inner cylinder 

rotating. The standard deviation in the fit of 0.725vertk   was 0.315 , though the 

trend is quite good over several decades of data in both drop size and energy 
input. The impact of the choice of DBf  is discussed later. In addition, the factor 

of 1/24.15 ( / )SG Mv v  was not included in the original 1980 work of Taitel et al. [4] 
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but was added by Barnea et al. [5], later claiming it to be a correction for flows 
other than those that are vertically upward [6]. In reality, this is a match to 
Calderbank’s data [12] on agitation experiments, not pipe-flow experiments, 
which only considered G  up to approximately 8%, much lower than the 

maximum possible value for dispersed-bubble flow. Thus, it is unclear how 
justified Barnea was in matching this data, which she pointed out herself [5]. 

3.2.2 Maximum packing factor for stable dispersed-bubble flow 
Taitel et al. [4] assumed that a gas-void fraction of 0.52G   gives the maximum 

packing factor of dispersed gas bubbles in liquid. This is the simple-cubic 
packing factor for spheres. It is assumed that for 0.52G  , coalescence occurs 

even in strong turbulence due to the close proximity of the bubbles. When the 
bubbles are packed tightly, they tend to deform each other, leading to more 
chaotic trajectories and then coalescence. At the point of interaction, the bubbles 
are no longer isolated and the regime cannot be considered dispersed bubble. 
Because dispersed bubbles are small, they are assumed to not slip relative to the 
liquid matrix, and 

NSG G  , where NS indicates no-slip. From the steady-state 

conservation of mass, it can be shown that: 

NS

SG SG
G

SL SG M

v v

v v v
  


.                                          (2) 

     Thus, a necessary, but not sufficient, condition for stable dispersed-bubble 
flow is: 

0.52 
NSG                                                   (3) 

for any inclination angle. 

3.2.3 Maximum diameter for deformation-resistant dispersed bubbles 
If the turbulent breakup produces sufficiently small bubbles that remain spherical 
and non-interacting, and the turbulence additionally prevents coalescence, then 
the dispersed-bubble flow will be stable. Dispersed bubbles will remain 
undeformed and, thus, coalescence-resistant when they are smaller than: 

 

1/2

0.4
2


 

 
  

  
L

CD
L G

d
g

,                                        (4) 

where the subscript CD refers to the “critical-deformation” diameter limit. This 
is modified from Brodkey’s reported value [13, p. 584], which was originally 
derived by Bond and Newton [14] from dimensional arguments and did not 
include the factor of 2. While Bond and Newton associated this limit with 
circulation, Brodkey points out that the departure from “solid-like” behaviour of 
bubbles is actually a result of bubble distortion and swerving motion. This is an 
Eötvös number scaling argument, with the Eötvös number set to roughly order 
one. The surface tension acts to stabilize the spherical shape of the dispersed 
bubbles, while the density difference promotes deformation. Barnea et al. [15] 
added the factor of 2 to better match to the data of Miyagi [16], though that 
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factor was not used in the original mechanistic modelling by Taitel et al. [4]. 
This mechanistic argument assumes that L G  . Thus, when: 

,max DB CDd d
                                                        (5) 

dispersed-bubble flow is allowed based on this regime transition, which is the 
second necessary, but not sufficient, condition for stable dispersed-bubble flow. 

3.2.4 Maximum diameter before buoyant creaming of dispersed bubbles 
The final regime-transition inequality for dispersed-bubble flow occurs as a 
result of a balance between buoyant forces and turbulent fluctuations [3] and 
finds relevance for horizontal, near-horizontal, and intermediate-inclination 
angles. If the buoyant forces dominate, then the gas bubbles will migrate to the 
top of the pipe faster than they can be re-dispersed into the liquid phase. The 
bubbles will interact and coalesce near the top of the pipe, leading to creaming 
and transition to either intermittent or stratified flow. The balance between 
buoyant and turbulent forces yields the critical bubble diameter, CBd , above 

which bubbles will migrate to the top of the pipe faster than they are re-dispersed 
by turbulence, where subscript CB refers to “critical buoyant.” 
     The component of the net buoyant force on a bubble of diameter, Bd , in the 

direction normal to the pipe axis is given by: 
3

, ( ) cos
6

    B
B net L G

d
F g ,                                    (6) 

which serves to draw the dispersed bubbles toward the top of the pipe when the 
inclination angle is anything other than ±90°. The opposing force due to 
turbulent fluctuations was given by Levich [17] as: 

2 2

square of radial 
 vel. fluctuations

1

2 2 4
M DB B

T L

v f d
F




,                                         (7) 

where Taitel and Dukler [3] proposed that the root-mean square of the radial-
velocity fluctuations could be approximated by the friction velocity, which can 
be represented by 1/2( / 2)M DBv f . The Fanning friction factor, DBf , is based on the 

mixture velocity, as discussed for eqn (1), and the choice of friction factor and 
mixture property models. Then, when ,B net TF F , bubbles will migrate to the top 

of the pipe, and the flow will transition from dispersed bubble to intermittent. 
The critical bubble diameter occurs when these forces are equated, giving: 

23

8 cos
L DB M

CB
L G

f v
d

g


  
 

   
.                                             (8) 

     Thus, when 
,max DB CBd d                                                 (9) 

dispersed-bubble flow is allowed based on this third regime-transition function, a 
necessary, but not sufficient, condition for stable dispersed-bubble flow. To 
allow evaluation at all pipe-inclination angles, eqn (9) is multiplied by cos , 
giving: 
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,max cos cos DB CBd d .                                        (10) 

     Regime-transition functions (3), (5) and (10) determine the boundaries for 
stable dispersed-bubble flow at all pipe inclinations. Each is a necessary, but not 
sufficient, condition for the existence of dispersed-bubble flow. Collectively, 
they are necessary and sufficient conditions. 

4 Closure relations 

To evaluate DBf  in eqn (1) for ,maxDBd  and eqn (8) for CBd  requires the evaluation 

of a dispersed-bubble Reynolds number, /DB DB DB DBRe v D  , which, in turn, 

requires models for the mixture density, DB , and mixture viscosity, DB . The 

mixture density is appropriately evaluated as a volume-weighted average, given 
by ,DB M vol G G L LH       , arising from , / / /M vol G G L Lm V V V V V     , 

where m  is the total mass of the mixture in a volume, V , and where /GV V  and 

/LV V evaluate to the same values as /GA A  and /LA A , respectively, due to the 

one-dimensional nature of the flow. While commonly used, this is not universal. 
For example, Taitel et al. [4] instead used DB L  , as discussed further below. 

4.1 Mixture viscosity 

A commonly used model for mixture viscosity is a volume-weighted average, 
given by ,DB M vol G G L LH        (see eqn 2.11 in Shoham [8]). However, if 

the viscosities have very different magnitudes, the physical justification for this 
model is weak. In dispersed-bubble flow, where liquid is expected to be in 
contact with the pipe walls, the massive reduction in viscosity due to passive gas 
bubbles seems overstated, particularly as G  approaches 0.52. Alternatively, the 

mixture viscosity can be set to that of the matrix (liquid) viscosity (as used by 
Taitel et al. [4]), or to a mass-weighted average, , (1 )M mass G G G Lx x     , where 

Gx  is the gas quality. The impact of each of these models will be shown. 

4.2 Friction factor 

The exact Fanning friction factor, 1
, 16DB lam DBf Re , is always used for 

2300DBRe   based on the analytical solution for single-phase flow. In 
mechanistic modelling, the turbulent Fanning friction factor is often evaluated 
using the Blasius form, , ( / ) DBn

DB Blas DB DB M DBf C v D    (see for example [3–8]). 
This has the same form as ,DB lamf  but does not account for variable pipe 
roughness.  Taitel and Dukler [3] and  Taitel  et al. [ 4] used the Blasius form, 
took the mixture properties  as that of the liquid ( DB L   and DB L  ), and set 

, 0.046DB turbC   and , 0.2 DB turbn  . For dispersed-bubble flow, it is expected that  
primarily liquid would be in contact with the pipe wall, making the choice of 

DB L                appear  reasonable.  However, the mixture density would be expected 
to be significantly modified by the presence of gas. 
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     Alternatively, the Haaland [18] approximation to the Colebrook equation is 
an explicit relationship for the turbulent Fanning friction factor given by: 

2
1.11

, , 10

/1 6.9
1.8log .

4 3.7
r

DB Haal turb
DB

D
f

Re




        
     

                     (11) 

     Both friction-factor models are smoothed between laminar and turbulent flow. 

5 Results and discussion 

Here it is assumed that the mechanistic models are perfectly valid, and only the 
impacts of the closure relations are considered. This is a significant assumption, 
as there are several questionable, but accepted, empirically based values included 
in the regime-transition functions. The most notable include the factor in 
brackets in eqn (1) used to evaluate ,maxDBd , the assumed maximum packing 

density of 0.52 appearing in eqn (3), the inserted factor of 2 in eqn (4), and the 
approximation of the root-mean square of the radial-velocity fluctuations by the 
friction velocity, represented by 1/2( / 2)M DBv f  in eqn (8). All of these are taken as 

correct, and only the influences of a broad parameter space, mixture-property 
closure relations, and friction-factor models are considered. 
     As a baseline, the regime map for air and water at 20°C and 1 atmosphere is 
presented in Figure 1 for properties 998L   kg/m3, 1.204G   kg/m3, 

31.002 10L
   kg/m-s, 51.825 10G

   kg/m-s, and 0.073L   N/m and with 

superficial velocities varied over the ranges 0.001 300SLv   m/s and 

0.001 300SGv   m/s for a smooth pipe ( 0r  ) with diameter 0.1D   m  

and vertical-upward inclination angle 90   . 
 

Figure 1: Regime map for air and water at 20°C and 1 atm for a smooth pipe 
with 0.1D   m, 90   , ,DB M vol  , ,DB M vol  , and , , DB Haal turbf . 
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5.1 Influence of superficial velocities on dispersed-bubble identification 

The regime-transition functions that identify dispersed-bubble flow, given by 
eqns (3), (5) and (10), all depend on SLv  and SGv . Eqns (5) and (10) both depend 

directly on L , G , L , and D . Only eqn (8) depends on  . The roles played 

by L , G , and r  in dispersed-bubble-flow identification are only through DBf . 

     The impact of SLv  and SGv  is relatively straightforward and independent of 

the fluid combination. Together, eqns (2) and (3) require 0.52( )SL SG SGv v v   for 

dispersed-bubble flow to exist. Stated another way, dispersed-bubble flow might 
exist (necessary, but not sufficient) if SL SGv v


, which is consistent with a liquid-

dominated flow containing discrete gas bubbles. The superficial velocities also 
directly impact ,maxDBd , and, thus, the regime-transition functions given by eqns 

(5) and (10). As the superficial velocities increase, the associated turbulence  
is better able to break up the bubbles, leading to smaller values of ,maxDBd . This is 

shown in Figure 2 for air and water at 20°C and 1 atm, with superficial velocities 
varied over the reduced ranges 0.1 300SLv   m/s and 0.1 300SGv   m/s for a 

smooth pipe ( 0r  ) with diameter 0.1D   m. Note that ,maxDBd  is independent 

of inclination angle. Also, at and below 0.1SL SGv v   m/s, the allowable ,maxDBd  

is larger than the pipe diameter, D , so the lower limits of SLv  and SGv  are 

truncated in Figure 2. In this case, the domain of allowed dispersed-bubble flow 
would be limited by the regime-transition functions of eqns (5) and (10). 
 

 

Figure 2: Variation of ,maxDBd  with SLv  and SGv  for air and water at 20°C and 1 

atm, for a smooth pipe with 0.1D   m and closure models 

,DB M vol  , ,DB M vol  , and , , DB Haal turbf  used (note the directions of 

the axes). 

5.2 Influence of densities on dispersed-bubble identification 

Gas and liquid densities can be very similar in oil and gas applications. As 
G and L  approach, both CDd  and CBd  increase, as shown by eqns (4) and (8). 
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As G L  , the regime-transition functions given by eqns (5) and (10) will be 
satisfied, and dispersed-bubble flow will fill all of the domain that satisfies 

SL SGv v
 . The dispersed-bubble regime map is shown in Figure 3 for three 

density combinations. Note the left-most figure uses the same inputs from the 
regime map in Figure 1. Though the trend for the domain to be increasingly 

filled with dispersed-bubble flow as G L   does hold, it is in practice only 
realized when G  very closely approaches L . 

 

  
1.204G  , 998

L
   kg/m3 200G  , 800

L
   kg/m3 599G  , 600

L
   kg/m3 

Figure 3: Dispersed-bubble regime map in the superficial velocity space, with 
various density combinations, and with L , G , and L  fixed as the 

properties of air and water at 20°C and 1 atm, with the closure 
models ,DB M vol  , ,DB M vol  , and , , DB Haal turbf  used. 

5.3 Influence of surface tension and inclination angle on dispersed-bubble 
identification 

Both ,maxDBd  and CDd  depend on surface tension, but together in the regime-

transition function given by eqn (5) they almost negate each other, having a net 
effect given by 3/5 1/2 1/10

L L L    . Over the three orders of magnitude range of 

allowable L , the value of 1/10
L  varies only from 0.4 to 0.8. 

     Furthermore, because CDd  is independent of  , the only significant 

dependence on L  and   occurs when the buoyant creaming mechanism ( CBd ) 

controls the boundary of the dispersed-bubble regime expected to occur for near-
horizontal flow. This transition mechanism is rarely controlling. However, such a 
case is shown by selecting properties that might be observed in an oil and gas 
well of 650L   kg/m3, 42.0 10L

   kg/m-s, 1.0G   kg/m3, 52.0 10G
   

kg/m-s, and varying the inclination angle and surface tension for three 
combinations of superficial velocities. The combined regime-transition functions 
for dispersed-bubble flow are plotted in Figure 4 in the surface-tension – 
inclination-angle space for a smooth pipe ( 0r  ) with 0.1D   m. From left to 

right, the transition is controlled by just buoyant creaming ( CBd ), then a mixture 

of buoyant creaming ( CBd ) and bubble distortion ( CDd ), and finally by CDd  

alone. 
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0.1SGv  , 4.0SLv   m/s 0.5SGv  , 4.0SLv   m/s 1.0SGv  , 4.0SLv   m/s 

Figure 4: Dispersed-bubble regime map in the  - L  space, with L  L , G , 

and G  fixed at possible oil and gas properties, and with the closure 

models ,DB M vol  , ,DB M vol  , and , , DB Haal turbf  used.  

5.4 Combined influence of the mixture density, mixture viscosity, and 
friction-factor models on dispersed-bubble identification 

For large SLv , the dispersed-bubble regime exists over a wide range of SGv . Four 

mixture density and mixture viscosity combinations are considered: the original 
form of Taitel et al. ( DB L  , )DB L   [3, 4], and three others, which take 

,DB M vol   with either DB L   or ,DB M vol   or ,DB M mass  . Sensitivities are 

demonstrated well by air and water at 20°C and 1 atm, since their base densities 
and viscosities are orders of magnitude apart. Consider vertically upward flow 
with 10SLv   m/s, which places all DBRe  well within the turbulent range. The 

value of DBRe  directly impacts DBf , which impacts ,maxDBd , CDd  and CBd . 

However, a high SLv  will satisfy the regime transitions given by eqns (5) and 

(10), and only when 0.52
NSG   is violated does dispersed-bubble flow cease to 

exist. Thus, with respect to SGv  or G , all parameters can be plotted over the 

same limits. The impacts on DBRe  and , DB Blasf  due to the density and viscosity 

models are shown versus SGv  in Figure 5. When the density and viscosity models 

are fixed, the maximum error between the Haaland and Blasius forms for air and 
water at 20°C and 1 atm is 2.1%, and thus, only , DB Blasf  is plotted. 

     The cases ( DB L  , )DB L   and ,( DB M vol  , , )DB M vol   produce very 

similar DBRe  and, therefore, similar friction factors. For the latter, the net effects 

of volume averaging both the density and viscosity in /DB DB DB DBRe v D   

offset. However, since ,DB M vol   is a much better approximation to the mixture 

density, this is the preferred method of the two, particularly if the hydrostatic 
component of pressure drop is of interest. 
     Likewise, the cases ,( DB M vol  , )DB L   and ,( DB M vol  , , )DB M mass   

produce similar DBRe  and DBf , since the density model is the same and the 

viscosity model of the latter is dominated by the liquid contribution, which  
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Figure 5: DBRe  and ,DB Blasf  dependence on closure models for mixture density 
and viscosity, over ranges where dispersed-bubble flow exists. 

accounts for most of the mass. This trend will not hold if the densities are similar 
but the viscosities very different. These latter two models predict DBf  up to 

12.4% higher than the cases above with ( DB L  , )DB L   and ,( DB M vol  , 

, )DB M vol  , with the greatest differences occurring near the upper limit of SGv . 

However, the regime transition for large SGv  is controlled primarily by 

0.52
NSG  , which is not impacted by DBf . Thus, the closure models for mixture 

density and mixture viscosity have very little influence on dispersed-bubble 
regime identification. Note, however, that the frictional component of pressure 
drop is directly proportional to DBf . 

6 Conclusions 

For oil and gas flows, the regime-transition functions for dispersed-bubble flow 
can vary significantly from that for air and water. The dominant sensitivity of 
regime identification is to the superficial velocities. Secondary sensitivities 
include the density difference, especially when G L  , and the inclination 

angle for cases where ,maxDB CBd d  controls the regime transition. 

     For pressure gradient, the roles played by the combined density and viscosity 
models significantly impact the friction factor and associated frictional 
component of pressure gradient. The mixture density for dispersed-bubble flow 
is directly proportional to both the frictional and gravitational components. 
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