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Abstract

A method for solving nonlinear differential equations, which facilitates the
computation of solutions of a high polynomial degree on a grid, is tested for use in
direct numerical simulation (DNS) of two-phase unsteady flow.

The method uses a grid discretization to approximate continuously distributed
variables, represented by functions of time and space, in a given set of differential
equations. The grid contains information about both the values and the values of
the derivatives of the unknown functions at the grid points in the computational
domain. With this method the derivatives are thus explicitly defined at each
grid point rather than, as in conventional numerical schemes, implicitly given by
the function values at the surrounding grid points. Using piecewise polynomial
interpolation functions can be represented with an arbitrary order of continuity
over the entire computational domain.

The high polynomial order used in this method allows for simulation of flow
features smaller than the interval separating each grid point. This reduces the
required number of grid points and the need to adapt the grid to complex boundary
geometry or to the interphase between different fluid phases. This simplifies grid
generation and reduces the computational cost.
Keywords: discretization, high order, direct numerical simulation, two-phase
unsteady flow.
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1 Introduction

The mathematical framework and algorithms employed are described in detail in
ref. [1], together with computed results for the lid-driven cavity test case. This
method has been developed for a finite element, residual minimizing type of
approach.

In the current work we apply the method to three dimensional unsteady two
phase flow. Simulations of a bubble in a cubical domain are carried out as a proof
of concept.

The current results are obtained after some improvements have been made. We
will therefore make a short review of these, as well as the changes that have been
made in order to perform two-phase flow simulations.

2 Adaption to two–phase unsteady flow

2.1 Basis functions and conditioning

As shown in [1] the choice of interpolating basis functions is important with
respect to the numerical conditioning of the resulting system of equations.
Bernstein polynomials were found to have acceptable properties. However, in the
current work we use a different set of polynomials (Table 1). The polynomials
given in Table 1 are chosen especially such that they produce a well conditioned
system. These polynomials are constructed such that at the end points (where the
interpolating variable, x, is either zero or one) they satisfy the conditions given
in Equations (1a)–(1b). Note that, for each order of continuity, there are an even
number of basis functions. Of each set, the lower half (λ ∈ {0 . . .Λ/2 − 1})
corresponds to the point at x = 0 while the rest (λ ∈ {Λ/2 . . .Λ−1}) corresponds
to the point at x = 1.

∂k

∂xk
bΛλ (x)|x=0 = akδkλ (1a)

∂k

∂xk
bΛλ (x)|x=1 = akδ(k+Λ/2)λ (1b)∣∣∣∣∣∣

1∫
x=0

bΛλ (x)dx

∣∣∣∣∣∣ = 1 (1c)

k ∈ {0 . . .Λ/2− 1} (1d)

Here ak is a positive normalization constant chosen such that sub-equation (1c)
is satisfied. Thus, a polynomial approximation of a function f(x), based on the
function values at the two end points (i.e. grid points) is given directly by the
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Table 1: Polynomial basis functions, bΓγ , for different orders of continuity.

C1 b40(x) = 2x3 − 3x2 + 1

b41(x) = 6x3 − 12x2 + 6x

b42(x) = −2x3 + 3x2

b43(x) = −6x3 + 6x2

C2 b60(x) = −6x5 + 15x4 − 10x3 + 1

b61(x) = −15x5 + 40x4 − 30x3 + 5x

b62(x) = −30x5 + 90x4 − 90x3 + 30x2

b63(x) = 6x5 − 15x4 + 10x3

b64(x) = −15x5 + 35x4 − 20x3

b65(x) = 30x5 − 60x4 + 30x3

C3 b80(x) = 20x7 − 70x6 + 84x5 − 35x4 + 1

b81(x) = (140x7)/3− 168x6 + 210x5 − (280x4)/3 + (14x)/3

b82(x) = 84x7 − 315x6 + 420x5 − 210x4 + 21x2

b83(x) = 140x7 − 560x6 + 840x5 − 560x4 + 140x3

b84(x) = −20x7 + 70x6 − 84x5 + 35x4

b85(x) = (140x7)/3− (476x6)/3 + 182x5 − 70x4

b86(x) = −84x7 + 273x6 − 294x5 + 105x4

b87(x) = 140x7 − 420x6 + 420x5 − 140x4

values of f(x) and its derivatives at the end points by

f(x) =

Λ/2−1∑
λ=0

bΛλ (x)aλ
∂λf(x)

∂xλ

∣∣∣∣
x=0

+

Λ/2−1∑
λ=0

bΛλ+Λ/2(x)aλ
∂λf(x)

∂xλ

∣∣∣∣
x=1

+O
(
xΛ
)

At each grid point then, the values {a0f, a1f
′, a2f

′′, . . . } ≡ {f̂ , f̂ ′, f̂ ′′, . . . } up
to a desired order of continuity are stored (here, prime denotes derivative and
ˆ indicates a normalized quantity). A matrix inversion is no longer needed to
produce the piecewise polynomial approximation for each cell. As a consequence
the floating point accuracy is no longer a limiting factor (see [1] section 2). Since
the higher derivatives tend to take on values of greatly varying magnitude even with
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small variations of the flow configuration, computing the scaled values directly
rather than derivatives, improves the conditioning of the resulting equation system.

2.2 Basis functions in three dimensions

The basis functions are generalized to higher dimensions by taking the product,
BΛ
k,l,m(x, y, z) = bΛk (x)bΛl (y)bΛm(z). In the current work we use this discretization

with the same order of continuity in the three spatial dimensions, and implicit
marching in the temporal direction (it is also possible to employ this discretization
in the temporal dimension, and to use different order of continuity in different
directions).

2.3 Unsteady flow

The continuity and momentum equations depend on the fluid phase in a way which
is not easily linearized. As a consequence we do not linearize all the governing
equations into a single system. Instead the velocity, pressure and phase are mapped
into separate linearized global equation systems, where the time derivatives of
the next time-step are the unknowns (including time derivatives of the spatial
derivatives, up to the given order of continuity). This is an implicit time–marching
scheme (see Table 2) where the solution for each time step is found by repeatedly
solving for velocity, pressure and phase, taking the previous solution as constant in
each step (the nonlinear optimization used in [1] was not implemented, as current
procedure alone produced acceptable convergence rates).

Table 2: Butcher tableau for the implicit marching scheme.

0 0 0
1 0 1

0 1

2.4 Interphase tracking

Numerical methods solving two-phase unsteady flow typically rely on either
adjusting the discretization geometry of the computational domain to fit the
interphase between the different fluid phases, or by using particles moving with the
flow, like the Particle in Cell (PIC) method [2, 3] and its successor, the Smoothed
Particle Hydrodynamics (SPH) [4] method.

The current method uses a constant grid combined with a sub-grid integration
scheme to achieve sub-grid accuracy. An iso-surface of a scalar function, f , is
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used to track the interphase between different fluid phases. This approach is also
employed by for example the Volume of Fluid (VOF) method [5].

The scalar function, f , is discretized in the same manner as the velocity and
density. Its time evolution is determined by convection along with the fluid
flow (see appendix for details). At each sample point, the distance, r, from the
interphase is approximated by r ≈ f/

√
∇f · ∇f . A smoothing function, s(r),

which is nonzero for small values of r determines the surface effects (see appendix,
Equation (7)). The smoothing function s(r) is a polynomial with continuous first
and second derivatives. The interphase is thus approximated by a layer near f = 0
of finite thickness. The necessary thickness depends on the density of the sample
points. In the current work the interphase thickness was approximately 7.79×10−3

(relative to the size of the computational domain).

2.5 Preconditioning

Solving the global equation system for the velocity is a potential bottleneck as the
resolution increases (the cost of the direct solution grows as N3(k + 1)3, with
N and Ck being the number of grid points and order of continuity). However, by
using the Cholesky factorization of the initial equation system as a preconditioner,
the system may be solved very efficiently in the subsequent iterations using the
conjugate gradient (CG) iteration (typically around five CG iterations).

3 Governing equations

The differential form of the Navier–Stokes equations (dimensionless, scaled with
appropriate physical quantities) are solved. Table 3 shows the numerical values
of the different parameters determining the fluid properties. The grid dependent
parameters are τ = T−1

L−1 and η = L − 1, where L and T are the spatial and
temporal grid resolutions, respectively. The reader may examine the appendix for
a detailed formulation of the governing equations.

4 Simulation

The simulation is of a fictitious fluid with high viscosity. The aim is to demonstrate
the method’s applicability to two-phase unsteady flow together with boundary
details on a sub-grid scale. The reader may refer to [1] for a verification and
comparison of the results of this method with conventional methods. Figure 1
shows the set up. The grid used in this case uses C2 continuity and thus a spatial
(polynomial) order of five (O(x6) terms are discarded). With seven-cubed grid
points we have L = 7 ⇒ η = L− 1 = 6. Further we let one time unit correspond
to sixty steps, thus τ = (T − 1)/(L− 1) = 10.

 WIT Transactions on Engineering Sciences, Vol 89,
 www.witpress.com, ISSN 1743-3533 (on-line) 

© 2015 WIT Press

Computational Methods in Multiphase Flow VIII  241



Table 3: The numerical values of the parameters of the governing equations. The
two fluids have equal properties except for the density, which is lower (by
a factor 100) for the bubble (phase II), resulting in a higher value of β.

phase I phase II

α 1011 1011

β 1/10 10

Re 100 100

~g (0, 0,−1) (0, 0,−1)

σ 10−3 10−3

z
→

x→

Figure 1: This figure shows the initial conditions of the system. The computational
domain is a cube. A solid, spherical object with radius 0.15 is fixed at
the center of the x-y plane at a (center) height 0.75. The lightest phase is
initially a sphere with radius 0.2 positioned at the center of the x-y plane
at a height 0.25 (scales relative to the size of the computational domain).
A cross section of the computational domain of the grid is shown on the
left hand side. On the right hand side we have a perspective rendering
showing the solid and the interphase at its initial position. The initial
flow velocity is zero and the initial pressure is constant. No-slip Dirichlet
boundary conditions are enforced throughout the simulation. The grid
resolution is indicated by dots (in this case 73 = 343 grid points).

4.1 System configuration

Figure 1 describes the computational domain and the initial conditions. The initial
distribution of the light fluid phase is axially symmetric and the computational
domain is cubical.
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t = 1/6 t = 2/6 t = 3/6

t = 4/6 t = 5/6 t = 6/6

Figure 2: This figure shows a perspective rendering (obtained with ray casting) of
the bubble interphase at different times. The surrounding dots are grid-
points at the edge of the computational domain.

t = 1/6 t = 2/6 t = 3/6

t = 4/6 t = 5/6 t = 6/6

Figure 3: This figure shows the x− z cross section (y centered) at different times.
The arrows are of constant length in each figure and are drawn in a
Lagrangian coordinate system, projected into the x− z plane.

4.2 Time evolution

Figures 2 and 3 shows snapshots of the simulation at different times. Table 4
shows numerical values of theoretically verifiable quantities at different time-
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Table 4: This figure shows computed numerical values of the physically constant
quantities: total mass and total horizontal momentum in x– and y–
directions (obtained with Monte Carlo integration). The exact value of
the mass is 10

(
1− 4

3π0.23
)

+ 4
3π0.23/10 ≈ 9.668 and the exact value

of the horizontal momentum is zero.

step mass x–momentum y–momentum

0 9.63863 0 0
5 9.63871 −1.69635× 10−5 8.60974× 10−6

10 9.63813 1.31676× 10−5 1.65046× 10−5

15 9.63808 9.96706× 10−6 5.95129× 10−5

20 9.63750 9.644× 10−5 9.89× 10−5

25 9.63620 0.000254756 0.000242913
30 9.63827 0.00035846 0.000307487
35 9.62337 0.000497964 0.000484558
40 9.63011 0.000585154 0.000473407
45 9.61777 0.000430384 0.000362024
50 9.61049 0.000440684 0.000301131
55 9.60459 0.000514161 0.000194891
60 9.60225 0.000688966 0.000309241

steps. As the bubble shape becomes stretched out and thinner compared to the
grid resolution, an increased inaccuracy is observed.

5 Computational cost

The computational cost can be divided into two parts, (i) the numeric integration
over all sample points which form the linearized system of equations, and (ii) the
cost of solving these equations. In this simulation the numeric integration required
most time (on average 262 seconds per iteration). Less than ten percent of the
time was spent on solving the systems (on average 27 seconds per iteration) due
to the rapid convergence of the CG iteration. It should be noted that the cost of the
numeric integration grows linearly with the number of grid-points. It is also easily
parallelizable.

5.1 Convergence

Figure 4 shows the convergence history for 12 different time-steps.
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10−6

10−4

10−2

100

1 10

Figure 4: The convergence history of twelve different time-steps of the simulation
is shown. The plotted value (dots) is the root of the sum of squares of
the step length of all flow components in the grid for each iteration. Each
iteration was terminated once this quantity dropped below 10−6.

6 Conclusion and outlook

Two main problems have been tested in these simulations. i) Two phase flow
and ii) sub grid geometry. Both of these were studied simultaneously without
fundamentally changing the method to fit either issue. Compared with the two
dimensional computations presented in [1] we see that the main computational
effort is spent on numeric integration, while solving the linear systems is
comparatively cheap due to efficient use of preconditioners. Since the algorithms
used for numeric integration are easily parallelizable and have a O(N) cost, the
benefit of increasing the hardware capabilities should be high compared to other
methods.

Appendix

The dimensionless Navier–Stokes equations for two phases

The characteristic length and velocity scales, which map to unity in the
computational domain, are x0 and v0 (t0 = v0/x0) and define the dimensionless
(non-primed) quantities:

~v

′

= v0~v (2a)

ρ′ = ρ0ρ (2b)

p′amb = ρ0v
2
0pamb (2c)
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p′ = ρ0v
2
0 (p+ pamb) (2d)

~g′ =
v2

0

x0
~g (2e)

∂

∂t′
=
v0

x0

∂

∂t
(2f)

∇′ =
1

x0
∇ (2g)

T′ =
µv0

x0
T =

µv0

x0

(
∇~v + (∇~v)

T
+
λ

µ
(∇ · ~v) I

)
(2h)

σ′ = σ0σ = ρ0x0v
2
0σ (2i)

f ′ = f (2j)

Here, ρ is density, p is pressure, ~v is velocity, T is the viscous stress tensor. The
sign of the scalar function, f , defines the fluid phase. The equation of state is
approximated by a linear relation between density and pressure. The superscript
T , is the transpose and I is the identity tensor. The phase dependent properties
are µ and λ (first and second viscosity coefficients), ρamb (ambient density) and
k = Kamb/ρamb where Kamb is the bulk modulus at ambient conditions.

The dimensionless phase dependent properties are determined by the
dimensionless parameters Re (viscosity), α (compressibility) and β (density):

Re =
x0v0ρamb

µ
, α =

kρamb
v2

0ρ0
=
Kamb

v2
0ρ0

, β =
ρ0

ρamb
(3)

We let λ/µ = −2/3. The viscous stress term, written as an operator S, acting on
the velocity reads

∇ · T = S · ~v =


∇2 + 1

3
∂2

∂x2
2
3

∂2

∂x∂y
2
3

∂2

∂x∂z
2
3

∂2

∂x∂y ∇2 + 1
3
∂2

3∂y2
2
3

∂2

∂y∂z
2
3

∂2

∂x∂z
2
3

∂2

∂y∂z ∇2 + 1
3
∂2

3∂z2

 · ~v (4)

The dimensionless formulation is then:

0 =
1

α

[
∂p

∂t
+ p∇ · ~v + ~v · ∇p

]
+∇ · ~v (5a)

0 =
1

α

[
p

(
∂~v

∂t
+ v · ∇~v − ~g

)]
+

(
∂~v

∂t
+ v · ∇~v − ~g

)
+ β∇p− 1

Re
S · ~v

(5b)

0 =
∂f

∂t
+ ~v · ∇f (5c)

Since the fluids are assumed weakly compressible, α is large and the bracketed
terms make only a small contribution. If the flow is incompressible (α → ∞ ⇒
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∇ · ~v = 0) it can be shown that S reduces to I∇2. In the single-phase case one
would choose ρ0 = ρamb yielding β = 1. In the two-phase case ρ0 may be set to
ρamb of one of the fluids, or something in between.

Adapting spatial and temporal scales to grid dimensions

The spatial and temporal scales in Equation (5) are defined so that their size is
equal to the interval [0, 1]4 in the computational domain. If the grid is uniform,
floating point round off errors might be reduced by defining the characteristic
length scales so that they instead correspond to the interval [0, L− 1]3× [0, T − 1]
in the computational domain. With L being the spatial grid resolution and T the
temporal grid resolution (i.e. the grid has L× L× L× T grid-points) the spacing
between grid points becomes equal to one. The corresponding set of equations are:

0 =
1

α

[
τ
∂p

∂t
+ p∇ · ~v + ~v · ∇p

]
+∇ · ~v (6a)

0 =
1

α

[
p

(
τ
∂~v

∂t
+ ~v · ∇~v − ~g

η

)]
+(

τ
∂~v

∂t
+ ~v · ∇~v − ~g

η

)
+ β∇p− η

Re
S · ~v (6b)

0 = τ
∂f

∂t
+ ~v · ∇f (6c)

where τ = T−1
L−1 and η = L− 1.

Surface tension

Surface tension gives rise to a pressure discontinuity in the equilibrium case. Since
the discontinuity is difficult to express accurately with continuous basis functions
we add it as an additional force (source term) in the momentum equation instead of
incorporating it in the pressure directly. The interphase is approximated by a small
interval around f = 0 with a smoothing function, s, depending on the distance, r,
from the interphase. The momentum equation, with surface tension included reads

0 =
1

α

[
p

(
τ
∂~v

∂t
+ ~v · ∇~v − ~g

η

)]
+

(
τ
∂~v

∂t
+ ~v · ∇~v − ~g

η

)
+

β

(
∇p− ησ ∇f

|∇f |
∂s

∂r
∇ ·
(
∇f
|∇f |

))
− η

Re
S · ~v (7)
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