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Abstract

Particle interactions in highly-viscous nonlinear and linear shear flows play
an important role in a variety of applications, including composite materials
processing, microfluidics, chromatography, and particle resuspension, to name
a few. Binary interactions between particles can provide information used in
rheological models for suspension flows such as migration rates and self-
diffusivity. In past numerical studies, particle roughness has been treated, for the
most part, as a constant, static quantity. In the current study, roughness is treated as
a stochastic parameter. Hence, quantities such as dispersion, net particle migration,
and self-diffusivity also become stochastic parameters. Numerical simulations are
performed using a semi-analytic solution for the motion of two particles in an
unbounded flow field to determine the effects of random particle roughness.
Keywords: particle interactions, particle migration, particle dispersion, self-
diffusivity, suspension flows.

1 Introduction

Interactions of smooth particles in isothermal, Stokes flow are theoretically
reversible. However, irreversibility can be introduced in a variety of ways including
viscosity perturbations, inter-particle static forces, salvation forces, and particle
roughness. In particular, particle roughness in suspension flows has been shown to
cause asymmetries in particle trajectories in linear shear flows [1, 2], particle pair
migration [2] in nonlinear shear flows, and asymmetric pair distribution functions
[3] in low-concentration suspension flows.

Experiments performed by Smart and Leighton [4] and Heath et al. [5] have
shown that the magnitude of particle roughness can, in certain cases, be determined
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by measuring the difference in the time it takes for a particle to sediment towards a
plane through a given distance, inverting the plane, and then measuring the time it
takes the particle to sediment the same distance away from the plane. However, in
the study by Smart and Leighton, particle roughness was made somewhat uniform
by gluing sieved sand particles of relatively uniform size to the outside of larger
spheres. In practice, roughness is not very uniform.

Papova et al. [6] performed experiments with three different types of PMMA
particles in terms of the surface treatment, namely, original surface (relatively)
smooth particles, lapped particles, and bead-blasted particles. They showed in
their experiments conducted in a Couette device that particle migration scaled
essentially with the square root of the root-mean-square particle roughness.

Ingber et al. [7] performed both experiments and numerical simulations of five
particles in a Couette device. In the simulations, a traction-corrected boundary
element method was employed with a static surface roughness model. They
determined that the increase in the so-called particle radial moment matched in the
average over the 52 experiments and corresponding numerical simulations when
the imposed surface roughness in the numerical simulations was approximately
four times the average physical particle roughness.

For the most part, numerical simulations of binary sphere interactions in shear
flow have treated roughness as a static quantity [2, 8, 9]. Zhao and Davis [10]
considered the interaction of sedimenting spheres with essentially two levels of
surface roughness. In general, surface roughness is a stochastic quantity. In this
research, the effects of stochastic surface roughness on quantities such as particle
dispersion, particle migration, and particle self-diffusivity is studied.

2 Numerical methodology

The problem under consideration is the binary interaction of two rough particles
in the zero-Reynolds-number limit. The governing equation for the fluid is the
Stokes equation and the governing equations for the particles are the equilibrium
and kinematic equations. The numerical method used to perform the simulations
in the current research is based on a semi-analytic solution for the motion
of two spheres suspended in an unbounded but otherwise arbitrary shear flow
[11]. The semi-analytic method is a vast generalization of classical bispherical-
coordinate solutions for two spheres moving along or perpendicular to their line
of centers, rotating about the centerline in a quiescent liquid, or suspended in
linear shear flow. The method is highly efficient and very convenient since the
algorithm does not require any local expansions of the ambient velocity field
u(x), but simply operates with the values of u(x) in the vicinity of the spheres,
which can be calculated either by an analytic formula (e.g., for Poiseuille flow)
or by a user-provided routine for more complex cases. The method provides
linear and angular velocities as a function of position. Once the linear and
angular velocities are determined, the particles are repositioned in space using
a third-order, variable-time-step Runge–Kutta routine. The governing equations
considered in this research are reversible. Further, this particular numerical
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algorithm is extremely accurate, and hence, the particle motions for presumed
smooth spheres are essentially reversible. The roughness model considered in
this research is essentially equivalent to the non-locked model of DaCunha and
Hinch [8] in which particles are not allowed to have separations less than a
specified roughness ε, but are allowed to rotate relative to each other. However,
unlike previous research [2, 8], roughness is presumed to be a random stochastic
quantity modeled as a normal distribution with specified average roughness and
standard deviation.

3 Results

We consider the interaction of two rough spheres in nonlinear shear (Poiseuille)
flow. The far-field velocity profile is in the x-direction and is given by

u = b− c(z − d)2 (1)

where b, c, and d are constants. The average sphere radius is denoted by a. The
following definitions are useful in characterizing these problems. The coordinates
of the two particles are given by (x1, y1, z1) and (x2, y2, z2). The initial center
to center separations of the spheres in the three coordinate directions are given
by ∆x−∞, ∆y−∞, and ∆z−∞. The shear plane is the x − z plane, the far-field
velocity is in the x-direction, and the initial separation is given by ∆x−∞/a =
−10a. The simulations are stopped when x2 − x1 = 10a which then sets
the downstream separations denoted by ∆x∞, ∆y∞, and ∆z∞. The particle
trajectories are typically drawn with respect to the transient separation ∆x =
x1 − x2.

Typical transient trajectories of the particle pairs in the shear plane are shown
in Fig. 1 for the case ∆z−∞/a = 0.2, ∆y−∞/a = 0.0, b = 41/40, c = 5/8,
d = 1/2, and particle roughness ranging between ε/a = 0 and ε/a = 0.01. As
seen in the figure for the case ε/a = 0.0 (smooth spheres), the particle trajectories
are symmetric about ∆x/a = 0 and, in particular, ∆z∞ = ∆z−∞. This
indicates that the particle trajectories are essentially reversible. As the roughness
increases, the in-plane particle dispersion ∆z∞ −∆z−∞ = ∆z±∞ is also seen to
increase indicating increasing irreversibility in the system with increasing particle
roughness. Another quantity of interest is the net particle migration which is the
location of the center of mass of the particle pair, zcm, at the end of the simulation.
Again, for smooth particles, there is no net particle migration. As the particle
roughness increases, the net particle migration also increases with zcm > 0
indicating that the particle pair has migrated towards the low-shear-rate region
of the flow field.

The analysis of in-plane particle dispersion and migration in previous studies
[2,11] has assumed that the particle roughness is constant. The effect of stochastic
surface roughness on particle dispersion and migration over 20 simulations is
shown in Fig. 2 again for the case ∆z−∞ = 0.2, ∆y−∞ = 0.0, b = 41/40,
c = 5/8, and d = 1/2. As seen in the figure, both particle dispersion and migration

 WIT Transactions on Engineering Sciences, Vol 89,
 www.witpress.com, ISSN 1743-3533 (on-line) 

© 2015 WIT Press

Computational Methods in Multiphase Flow VIII  209



6x/a

z 1/a
, z

2/a

-10 -5 0 5 10-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
¡ /a=0.0
¡ /a=1.0e-3
¡ /a=1.0e-2

-10 -5 0 5 10-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1: Particle trajectories in the shear plane of two rough spheres suspended in
Poiseuille flow with initial positions (-5.0,-0.05,0.1) and (5.0,0.05,-0.1),
∆y−∞ = 0.0 and ∆z−∞ = 0.2.

Simulation Run Number
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Figure 2: Dispersion, migration, and particle roughness for 20 simulations for
an average roughness of ε/a = 1.0e-4 and standard deviation of
σ = 2.0e-5.
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Figure 3: Standard deviation, STDV, of the particle net migration as a function
of the nonlinearity parameter, NLP , for the case ∆z−∞/a = 0.2,
∆y−∞ = 0.0, and ε/a = 1.0e-3.

correlate essentially perfectly with the stochastic particle roughness which is not
surprising considering roughness is the only form of irreversibility introduced into
the flow. (There is some very small irreversibility introduced into the simulations
caused by numerical error, but this irreversibility is imperceptible in the figure.)

A quantity of interest is the so-called nonlinearity parameter, NLP , defined by

NLP =
a∇γ̇

γ̇ + γ̇NL
(2)

where a is the sphere radius, γ̇ is the local shear rate calculated at the initial
location of the center of mass of the particle pair, and γ̇NL is the so-called nonlocal
contribution to the shear rate ( [12]). The nonlocal shear rate is given by

γ̇NL =
a

D
γ̇o (3)

where D is distance between the walls and γ̇o is the shear rate for the unperturbed
flow at the wall. As the name suggests, the nonlinearity parameter is a measure of
the nonlinearity of the flow field. The effect of the nonlinearity parameter on the
standard deviation of the net migration for initial separation given by ∆z−∞/a =
0.2, ∆y−∞ = 0.0, and average sphere roughness given by ε/a = 0.001 is
shown in Fig. 3 for three different values of roughness standard deviation. As
seen in the figure, the standard deviation of the net migration increases with both
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Figure 4: Standard deviation, STDV, of the particle dispersion as a function of the
nonlinearity parameter, NLP , for the case ∆z−∞/a = 0.2, ∆y−∞ =
0.0, and ε/a = 1.0e-3.

increasing nonlinearity in the flow field and increasing standard deviation of the
sphere roughness.

The dispersion, ∆z±∞, as a function of the nonlinearity parameter is shown in
Fig. 4. As seen in the figure, for the two lower values of the roughness standard
deviation, there is little influence of the nonlinearity parameter on the dispersion.
This is actually an expected result as it has previous been shown [2, 11] that
the nonlinearity parameter has little influence on particle self-diffusivity which
is primarily a function of particle dispersion as discussed below.

The final quantity considered in this research is the in-plane self-diffusivity of
binary sphere iterations in linear shear flow. The self-diffusivity in the shear plane,
Ds

z , can be calculated by evaluating the following integral ( [2])

Ds
z = φa2γ̇

3

8π

∫ ∞
−∞

∫ ∞
−∞

(∆z±∞)2∆z−∞dy−∞dz−∞ (4)

The in-plane self-diffusivity Ds
z for a linear shear flow over 20 different

simulations with average particle roughness of ε/a = 0.001 is shown in Fig. 5
for three different standard deviations of the roughness. As seen in the figure,
the average in-plane self-diffusivity does not change appreciably with roughness
standard deviation. In fact, the average self-diffusivity, D̄s

z , is given by 7.91e-4,
7.82e-4, 7.86e-4 for roughness standard deviations of 1.0e-2, 1.0e-4, and 1.0e-6,
respectively. Similarly, the standard deviation of the in-plane self-diffusivity is
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Figure 5: In-plane self-diffusivity Ds
z for a linear shear flow.

given by 5.86e-6, 1.32e-5, and 2.67e-5 again for roughness standard deviations
of 1.0e-2, 1.0e-4, and 1.0e-6, respectively. That is, the standard deviation of the
self-diffusivity essentially doubles with a doubling of the standard deviation of the
roughness over the range considered in this study.

4 Conclusions

The effects of stochastic surface roughness on the binary interactions of spheres
in linear and nonlinear shear flow are considered in this research. Stochastic
surface roughness causes parameters such as particle dispersion, migration, and
self-diffusivity to also be stochastic parameters. There is essentially a perfect
correlation between increases and decreases in the surface roughness with
increases and decreases in particle-pair dispersion and net migration. An increase
in the nonlinearity parameter caused an increase in the standard deviation of the
net particle migration, but had little effect on the standard deviation of the net
particle dispersion. The standard deviation of particle roughness had essentially
no effect on the average value for the in-plane self-diffusivity. However, the
standard deviation of the self-diffusivity scales linearly with slope one with the
standard deviation of the particle roughness over the range of surface roughnesses
considered in this study.

 WIT Transactions on Engineering Sciences, Vol 89,
 www.witpress.com, ISSN 1743-3533 (on-line) 

© 2015 WIT Press

Computational Methods in Multiphase Flow VIII  213



Acknowledgement

This material is based upon work supported by the National Science Foundation
under Grant No. CBET-1335781. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

[1] Zeng, S.L., Kerns, E.T. & Davis, R.H., The nature of particle contacts in
sedimentation. Phys Fluids, 8(6), pp. 1389–1396, 1996.

[2] Ingber, M.S., Feng, S., Graham, A.L. & Brenner, H., The analysis of self-
diffusion and migration of rough spheres in nonlinear shear flow using a
traction-corrected boundary element method. J Fluid Mech, 598, pp. 267–
292, 2008.

[3] Rampall, I., Smart, J.R. & Leighton, D.T., The influence of surface roughness
on the particle-pair distribution function of dilute suspensions of non-
colloidal spheres in simple shear flow. J Fluid Mech, 339, pp. 1–24, 1997.

[4] Smart, J.R. & Leighton, D.T., Measurement of the hydrodynamic surface
roughness of noncolloidal spheres. Phys Fluids A, 1, pp. 52–60, 1989.

[5] Heath, C.E., Feng, S., Day, J.P., Graham, A.L. & Ingber, M.S., Near Contact
Interactions Between a Sphere and a Plane. Phys Rev E, 77, pp. 026307–1–
026307–10, 2008.

[6] Popova, M., Vorobieff, P. & Graham, M.S.I.A.L., Interaction of two particles
in a shear flow. Phys Rev E, 75, pp. 066309–5, 2007.

[7] Ingber, M.S., Mammoli, A.A., Vorobieff, P., McCollum, T. & Graham, A.L.,
Experimental and numerical analysis of irreversibilities particles suspended
in a Couette device. J Rheol, 50(2), pp. 99–114, 2006.

[8] DaCunha, F.R. & Hinch, E.J., Shear-induced dispersion in a dilute suspension
of rough spheres. J Fluid Mech, 309, pp. 211–223, 1996.

[9] Wilson, H.J. & Davis, R.H., The viscosity of a dilute suspension of rough
spheres. J Fluid Mech, 421, pp. 339–367, 2000.

[10] Zhao, Y. & Davis, R.H., Interaction of sedimenting spheres with multiple
surface roughness scales. J Fluid Mech, 492, pp. 101–2998, 2003.

[11] Ingber, M.S. & Zinchenko, A., Semi-analytic solution of the motion of two
spheres in arbitrary shear flow. J Mult Flow, 42, pp. 152–163, 2012.

[12] Miller, R.M. & Morris, J.F., Normal stress-driven migration and axial
development in pressure-driven flow of concentrated suspensions. J Non-
Newt Fluid Mech, 135, pp. 149–165, 2006.

 WIT Transactions on Engineering Sciences, Vol 89,
 www.witpress.com, ISSN 1743-3533 (on-line) 

© 2015 WIT Press

214  Computational Methods in Multiphase Flow VIII




