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Abstract 

In this paper, a time dependent model for studying BWR in phase instabilities in 
the nonlinear regime is developed. This model is based on solving the mass 
energy and momentum conservation equations, for the single phase region and 
for both phases in the sub-cooled boiling and the bulk boiling regions. The 
model has been implemented in a code that also integrates: the recirculation loop 
dynamics equation; the heat transfer dynamic equations between the fuel and the 
channel; and the neutron kinetics equations. Special attention has been given in 
this paper to the sub-cooled boiling region and to the consequences of the degree 
of sub-cooling on the bubble dynamics. Also the direct heating of the water 
channel by neutrons and gamma rays has been considered. The result is a code 
called DYNAMICS that is able to perform in the time domain quantitative 
analysis of all the processes that affect the reactor stability. 
Keywords: density wave oscillations, two phase flow channels, in phase 
oscillations in BWR, sub-cooled boiling. 

1 Introduction 

The problem of two phase flow instabilities it is found in a big variety of energy 
and chemical engineering systems such as the channels of Boiling Water 
Reactors (BWR), conventional steam boilers, and phase change heat exchangers 
used in the chemical industry. Among the different instability types the most 
important for the nuclear engineering field is the density wave oscillation 
mechanism (DWO), which is due to a multiple regenerative feedback between 
the mass flow rate, the steam generation rate, and the pressure drop [1, 2]. This 
phenomenon is especially interesting in BWR because there is a coupling via the 
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void and Doppler reactivity feedbacks between the void fraction, and the fuel 
temperature with the core power. The goal of the present paper is to develop a 
time dependent model for studying BWR in phase instabilities in the nonlinear 
regime. This model is based on solving the mass energy and momentum 
conservation equations, for the single phase region and for both phases in the 
sub-cooled boiling and the bulk boiling regions. The model has been 
implemented in a code that also integrates: the recirculation loop equation, the 
heat transfer equations, and the neutron kinetics equations. Especial attention has 
been devoted to the sub-cooled boiling region and to the consequences of the 
degree of sub-cooling on the bubble dynamics, especially the effects due to  
the bubble collapse in the sub-cooled boiling region. Also the direct heating  
of the water channel by neutrons and gamma rays has been considered. The 
result is a code called DYNAMICS that is able to perform in the time domain 
quantitative analysis of all the processes that affect the reactor stability especially 
in the two phase region. The code results have been compared with stability 
measurement of BWR nuclear power plants at different stability conditions. 
     The paper is organized as follows, section 2 explains the thermal-hydraulic 
and neutronics models of the code, section 3 explains the discretization and 
integration of the equations, and section 4 contains the results for the steady state 
and an in-phase oscillatory reference case for a BWR reactor. 

2 The thermal-hydraulics and neutronic model in the 
DYNAMICS code 

2.1 Channel thermal-hydraulics 

The actual model implemented in the DYNAMICS code is based on the 
integration of the mass, energy, and momentum equations in the single phase and 
two phase regions. Inside the two-phase region we distinguish between the sub-
cooled boiling region and the bulk boiling region. 
     The mass conservation equations used in the sub-cooled boiling region (SBR) 
are the steam and the total mass ones. The steam mass conservation equation is:  
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where Fs is the energy fraction transferred to the coolant that is invested in steam 

production, s is the rate of buble’s destruction by collapsing in the sub-cooled 

coolant; cQ  is the rate of energy transferred from the fuel to the coolant per unit 

length, x is the dynamic quality of the coolant,  the void fraction, G the mass 

flux, and A the channel area. In the bulk boiling region, we use for the steam the 
equation (1) with 0s  , and 1Fs  . The conservation equation for the total 

mass is the same one in the sub-cooled and bulk boiling regions and is given by: 
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     The conservation equation for the total energy of both phases, neglecting 
acoustic phenomena is in the sub-cooled and in the bulk boiling region given by:  
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where DHQ is the rate of heat received per unit length by direct heating from 

neutrons and gamma rays. Because in equations (1) to (3) appears the quality and 
the void fraction, therefore we need a closure relation that relates the void 
fraction with the quality in both regions. The closure relation selected is [3]: 
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where s is the slip ratio or ratio between the steam and liquid velocities. To 
compute s we use the modified Bankoff empirical correlation as determined by 
Jones and Digh [4], that is the same one used by the LAPUR code [5]. 
     Concerning the momentum conservation equation for the two phase mixture 
in the channel is given by: 
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     This equation takes into account the momentum changes due to: acceleration, 
pressure, gravity forces, friction forces, and pressure losses at the entrance and 
the spacers located at positions ݖ௜. In equation (5), G is the mass flux, f is the 
channel wall friction factor; Ф2 is the two phase multiplier; Ω is the Jones 
multiplier; Dh is the hydraulic diameter and Kin denotes the form loss factor at 
the channel inlet. The last term in equation (5) takes into account the friction 
losses at the spacers, where Ki denotes the form factor for the i-th spacer. 

2.2 Heat transfer in the fuel 

We neglect in this case the axial conduction in the fuel because it is very small 
when compared with the radial conduction. Then starting from the heat transfer 
equation in the fuel rod and in the clad, it is obtained the following set of 
equations for the evolution of the average temperatures in the fuel and the clad 
respectively [6]: 
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where '
fM is the fuel mass per unit length (Kg/m), cf is the fuel heat capacity

coefficient (J/kg °K), '
clM  is the clad mass per unit length, ccl is the heat

capacity of the clad, )t(QF is the heat generation rate in the fuel per unit length, 
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)t(Qg  is the heat transfer rate per unit length  from the fuel to the clad. fT~  and 

clT~  are the average temperatures in the fuel and the clad respectively. 

     In equation (6) the heat transfer rate per unit length from the fuel to the clad is 
given by the following expression [6]: 
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Being gR the thermal resistance per unit length from the fuel to the clad when 

using volumetric average temperatures and hgap is the heat transfer coefficient of 
the gap. Finally the heat transfer rate per unit length from the clad to the coolant 
is given by : 



















f

cl
2
f

2
cl

2
f

clccl
cccl

c

rods
c r

r
rr

r
2
1

k2
1

hr2
1RwithTT

R
ntQ ln)

~~
()(


    (8) 

where cR  is the thermal resistance per unit length from the clad to the coolant 

and  hc the heat transfer coefficient from the clad surface to the coolant bulk. 

2.3 The point kinetics model 

The DYNAMICS-V1 code incorporates a pont kinetics model with one group of 
delayed neutrons and reactivity feedback by fuel temperature and void fraction. 
The kinetic equations used are the standard ones with one group of delayed 
neutron precursors. These equation for the neutron population )(tN and the 

delayed neutron precursor population )(tC are expressed in terms of the 

normalized variables: 00 N/)N)t(N()t(n   and 00 N/)C)t(C()t(c  , 

where the subindex 0 means steady state values. On account of the previous 
definitions the standard point kinetic equation can be recasted in the form: 

cn
dt
dn 










 , and cn
dt
dc 




                        (9) 

where is the mean neutron generation time ,  is the disintegration constant of 
delayed neutron precursors and   is the total fractional yield of delayed neutron 

precursors. 
     The total feedback reactivity   is composed of the void feedback reativity 

 plus the Doppler  feedback reactivity )T~T~(D 0fffD  , see reference [8]. 

     To obtain the reactivity change due to the changes is the void fraction we take 
into account the void fraction values at each axial node, and on account of these 
void fraction values we compute the void fraction reactivity coefficients using 

the following expression: 2
321 ccc   / , that depends on the void 

fraction at each particular node. Then, we multiply the reactivity coefficient at a 
given node by the void fraction variation in that node with respect to the steady 
state void fraction, finally we multiply the result by the reactivity weighting 
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factor Wr,i for that particular node, that depends on the square of the power in the 
node, and we sum up for all the nodes [8]. 
     The coupling of the fuel temperature equation with the point kinetic equations 
for the neutron populations is performed through the following relationship: 
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where P0 is the steady state power, and H the active length of the reactor core, 
and DHf  the fraction of energy deposited in the coolant by direct heating of 

neutrons and gamma rays. The amount of heat transfer rate per unit length to the 
coolant is given by the expression:  
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where h is the average heat transfer coefficient from the  clad to the coolant, AHT 
is the heat transfer area, and cT is the temperature difference between the clad 

and the coolant. 

2.4 Recirculation loop dynamics 

The recirculation loop is formed by the upper plenum, the steam separators, the 
downcomer, the jet pumps and the lower plenum. To simplify the calculations, 
the recirculation loop is treated as a a single path of uncompressible fluid and 
with variable area without boiling. With this assumption and integrating the 
mechanic balance equation from the loop inlet siL to the loop outlet soL, it is 
obtained the following result, see reference [6] page 317: 
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where W(t) is the total mass flow rate (kg/s); Hp(W) is the manometric height of 

the pump; vE~  is the coefficient of friction energy losses per unit mass;  is the

average density of the coolant in the recirculation loop (RCL) and finally (L/A) 
is the ratio of length to area in the loop. These magnitudes are defined by: 









oL

iL

s

s )s(A)s(
ds

A
L


 , and 

oL

iL

s

s
ds)s(A)s(

V
1    (13) 

Assuming that the energy loss rate per unit mass due to friction and area changes 

in the recirculation loop is given by 2
v WKE~  . Also we assume that for 

the case of transients where the coolant inventory remains constant in the 
recirculation loop, then the density gradients along this flow path are smalls in 
magnitude because it does not exist boiling along the flow path. Then it is a good 
approximation to assume that the third term of equation (12) is approximated 

/)pp( iLoL  . 
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     Therefore from equation (12) and assuming that we are in natural circulation 
conditions , and it is possible to neglect the pump head effect, it is obtained after 
some simple manipulations the following equation for the mass flux variations 
with time at the channel entrance: 
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where 0,nc,fp is the pressure drop by friction and form losses in the 

recirculation loop at steady state and natural circulation conditions, and 
A/W)t,0z(G   is the mass flux at the channel entrance. Finally 

)t(p),t(p L0iL  are the pressure oscillations at the inlet and outlet of the 

recirculation loop with respect to the steady state pressures at natural circulation 
conditions i.e. 0,iLiLiL p)t(p)t(p  , and 0,oLoLoL p)t(p)t(p  . 

2.5 Closure relations and properties 

To closure the conservations equations displayed in the previous sections we 
need a set of empirical correlations, to obtain the numerical values of the model 
parameters as heat transfer coefficients, friction factors, two phase flow 
multipliers and so on. 

  The correction factor of Jones to the friction pressure drop in the two phase 

region is given by the expression: G1059.1 4 , being  G the mass flux 
expressed in S.I. units of kg/m2 s. 
     For the local losses produced by the spacers we have used the multiplier 
expression obtained by Jones and Digh [9] that can be used for a broad range of 
pressure conditions. The expression for the Martinelli–Nelson multiplier used for 
the spacers depends on the pressure and the dynamic steam quality x. A fit valid 
for x < 0.7 was synthetized by Jones and Digh [4] as: 
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where ai are pressure dependent fitted parameters given by: 
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for j=3,…6, and finally p is the pressure in kg/cm2. Because the spacers play an 
important role in reactor stability we have used expression (15) for the two-phase 
multiplier at the spacer location. To account for the variations in the Martinelli–
Nelson multiplier produced by the void fraction variations, around the steady 
state conditions we have used the following Taylor expansion: 
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where 0  is the void fraction variation with respect to the steady state 

value, and the partial derivatives have been obtained from equations (17), and the 
quality–void fraction relation. 

  The friction loss factor for the liquid has been obtained from the Moody 

correlation in the turbulent region (Re> 2200), 25.0
0l Re316.0f  , being Re

the Reynolds number at the channel conditions. 
     The heat transfer coefficients in the single-phase and two phase regions have 
been obtained using the Dittus–Boelter (HDB) heat transfer coefficient in the 
single-phase region, and the Jens–Lottes (HJL) heat transfer coefficient in the two 
phase region. These coefficients are given by the following expressions: 
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where Re is the liquid Reynolds number, Pr is the Prandtl number, and Tw is the 
clad wall temperature. 
     The procedure to determine the height of the inception point z1 for the sub-
cooled boiling is obtained equating the single-phase forced convection heat flux, 
at the inception point to a Jens–Lottes type heat flux for two phase flow. The 
application of this criterion leads to the following expression for the liquid 
temperature 

1z,lT at the inception [10], in terms of the heat flux Q  at the wall:
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where DBH is the single-phase forced convection heat transfer coefficient, given 

by the Dittus–Boelter formula; Tsat is the saturation temperature, and the constant 
C2 is given by: 
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     Below the inception point all the heat is invested in coolant heating, so Tl(z) 
increases with z along the vertical axis. Because the heating is not uniform the 
change in the liquid temperature must be determined on account of the power 
distribution along the channel. Then we must obtain the point z1 where the liquid 
temperature attains the inception temperature Tl,z1  given by equation (21) that 
depends on the heat flux and the fluid properties through the Re and Pr numbers. 
So an iterative procedure has been devised to obtain the height z1 at which the 
inception point is located, in this iterative procedure we determine Tl(z) at 
 the lower nodes assuming all the heat is invested in liquid heating, then we 
get the inception temperature as a function of z, and this function decrease with 
z. Because Tl(z) increase with z, we determine the point where Tl(z), and Tl,z1(z)
attain the same value. At this point the heat fluxes obtained from the Dittus–
Boelter and the Jens–Lottes correlations are the same. 
     To obtain the heat fraction Fs invested in steam production we take into 
account that the amount of heat transferred to the sub-cooled fluid can be 
decomposed according to Lahey and Moody [3] and Otaduy [5] in three 
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components:  
i) formation of steam bubbles near the heating surface which may detach into the 
main flow steam; ii) pumping of the liquid mass out of the control volume by  
the expanding action of the steam bubble formation; and (iii) single-phase 
convective heating through the parts of the heating surface no generating 
bubbles. The research performed on the importance of the three terms have 
concluded that the steam formation and the pumping process are predominant 
over the convective process to the liquid. Therefore on account of this previous 
discussion we can write [3, 10]: 
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where evapq  is the part of the energy flux related to the steam formation, while 

pumpq  is the part of the energy flux associated to the pumping process. Now, 

according to Rouhani and Axelson [11], the quotient between both energy fluxes 
can be computed with the approximation that the liquid that leaves the control 
volume is at saturation, and therefore the quotient between both energy fluxes is: 
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where jb is the steam volumetric flux and Hl is the degree of sub-cooling defined 
by: fglfl hhhH /)(  . Some codes as LAPUR include a correction factor 

fp=1.3 to better correlate the predictions with the experimental data. 
     In the DYNAMICS program it was assumed that when the liquid enthalpy 
was close to the saturation value, then we were in the bulk boiling region and we 
assume that all the heat was invested in steam production. 
     To compute the decay constant for the void fraction in the sub-cooled region 
the model used by DYNAMICS is based on the Jones and Digh model [4], this 
model is also used by the LAPUR code [5]. The results of this model were 
compared with the expression used by the RELAP5 code [10], obtaining similar 
results. Jones model uses the following expression to calculate the time decay 
constant of the bubbles in the sub-cooled region: 
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     The constant c in equation (24) have taken equal to 0.125, that it is a 
recommended value for the number of nodes used in the sub-cooled region for 
typical BWR channels. Tc0 is the clad temperature at the inception of the sub-
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cooled boiling; Hw is the single-phase heat transfer coefficient; fk is the liquid 

conductivity at saturation and finally pfc is the water specific heat at saturation. 

3 Discretization and integration of the equations 

3.1 Discretization of the conservation equations 

The set of conservation equations (1), (2), (3) and (5) form a partial differential 
equation system. The integration of these equations with respect to the axial 
coordinate between the node limits produces a set of ordinary differential 

equations. Applying the operator  
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     It is obtained the following set of ordinary differential equations, that when 
the channel area is considered as constant reduce to: 
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glii1iiii
 )(),(),(                             (27) 

     In the sub-cooled region the equation that gives the void fraction evolution is

  i,sub1i1iii
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

   (28) 

     The void fraction variation in the sub-cooled region can be also obtained from 
the following equation deduced from equations (27) and (28): 

 
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         (29) 

     In the bulk boiling region from the discretized mass and energy conservation 
equations the following equation, for the void fraction evolution, is obtained: 

  

  )()t,z(xh))t,z(x1(hhh

)t,z(G)hh()t,z(x)t,z(x1)A/QQ(

dt
d

gfigifffgg

1igf1ii
i
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







  (30) 

     In the sub-cooled-boiling region (SBR) and if the power oscillations are 
important, it is necessary to take into account the oscillations produced by the 
heat transfer on the liquid enthalpy. These evolution equations for the liquid 
enthalpy in the i-th node can be obtained from the energy conservation equation 
and are given by: 
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(31) 

Finally the integration of the momentum equation along the the node, gives the 
following result for the pressure )( 1izp   at the lower node boundary  in terms of 

the pressure )( izp at the nodal upper boundary, when we have friction losses, 

and form losses at the entrace and the spacers: 
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where MF(zi) is the momentum flux at z=zi: 
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     FRi are the friction losses at node i per unit length, that are given by:  
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     In equation (32), it is necessary to compute dtdGii / , to obtain the variation 

with time of the average mass flux in the node we assume that: 
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1

dt
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                            (35) 

     Now computing the time derivative of equation (27) with respect to time 
yields: 
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     Therefore on account of (35) and (36) it is deduced that the average mass flux 
variation with time in node i can be expressed in terms of the flux variation and 
the channel entrance by means of the expression: 
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
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1sbj 2
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2

igl
0i

dt
d

2
1

dt
dG

dt
dG  )(                        (37) 

where the sumation extends over all nodes located between the inception of sub-
cooled boiling and the node i. 

3.2 Integration of the equations and boundary conditions 

To integrate the set of equations (6), (9), (14), (27), (29), (30), (31) and (32), the 
first step is to solve the steady state equations i.e. with the time derivatives set to 
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zero. To obtain the stationary solution we iterate until convergence is attained, in 
this way a set of variable values at steady state conditions are obtained and that 
are denoted by the sub-index 0. Solving the steady state equations and using the 
constitutive relationships we get the steady state variables values, 

nd1i0i ,..,,,  , 0G , 0fT ,
~

, 0clT ,
~

, N0, C0, nnd1ih 0il ,...,,,  . Where nnd denotes 

the number of axial nodes of the problem, typically 25. Also we compute the 
steady state values of a set of magnitudes at the nodes boundaries: )( i0 zp , 

)( i0 z , )( i0 zx , )( i0 zs , )(, i0g zu , )(, i0l zu . 

 The boundary conditions that are applied to the model are: 
1) It is assumed that the pressure at the upper plenum is known and is constant

along time. This is a consequence of the assumption that there is not
accumulation of steam and water in the upper plenum (UP) and this
condition lead, as proved by Prassad et al. [2], to constant pressure in the
upper plenum. March-Leuba [1] also considered this same boundary condition,
but they assume that the UP pressure is mantained constant by the pressure
regulator.

2) It is assumed that the coolant at the channel inlet of the core is sub-cooled
and in liquid phase. Therefore at the channel inlet we have the following
conditions: inl Tt0zT0t0z  ),(.;),( .

3) The mass flux G(z=0,t) at the channel inlet is determined by the dynamics of
the recirculation loop.

     Therefore solving the steady state equation we obtain the initial values of the 
problem at time 0: 

0,ii

cladf0,li,l0i0,ii

p)0t(p

),0t(T~),0t(T~,h)0t(h,G)0t(G),z()0t(



 

     Then we substract from the ordinary diferential equations (ODE), their steady 
state equations and we obtain a set of ODEs for the variation of the magnitudes 
around their steady state values. These equations are denoted as the normalized 
equations. Obviously this set of ordinary differential equations is non linear and 
has been solved by a modified Runge–Kutta algorithm of 4-th order. 
     The numerical calculation of the set of equations during one time step 
proceed as follows, first it solves the set of differential equations system formed 
by: (i) equations (29) and (30) for the void fraction variations in the sub-cooled 
and the bulk boiling regions, (ii) equation (14) for the variations of the mass flux 
at the channel entrance, (iii) equations (6) for the average fuel temperature 
variations, and the average clad temperature variations, equations (9) for the 
neutron population normalized, and the delayed neutron precursors normalized 
and equations (31) for the sub-cooled enthalpy variations in the sub-cooled 
nodes. This previous set of equations when expresed in terms of its oscillations 
around their steady state values form a differential equation system of the form: 

ܡୢ

ୢ୲
ൌ fሺܡ, ,ܘ ۵, tሻ                                              (38) 

where the vector:	࢟൫ࢻࢾሺݐሻ, ,ሻݐ଴ሺܩߜ ߜ ௙ܶ, ߜ ௖ܶ௟, ݊ሺݐሻ, ܿሺݐሻ,  denotes the		ሻ൯ݐሺ࢒ࢎࢾ
magnitude variations around its steady state values. The vectors ࡳሺݐሻdenotes the 
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mass fluxes ))t(G),...t(G),t(G( 1nnd21   at the node boundaries, obviously the 

mass flux at the first node boundary must be equal to the entrance to the channel 
mass flux denoted by G0. The vector ࢖ሺݐሻdenotes the pressures 

))(),...(),(( tptptp 1nnd21  at the boundaries of the channel nodes. 

     Simultaneously to the system of differential equations (38), we must solve the 
equations to obtain the must fluxes and the pressures at the nodes boundaries i.e. 
equations (27) and (32). In this case we note that in the previous equation (32) 
appears the term dt/dGii , that is computed with the help of equation (37) and 

involves the calculation of 2
i

2 dt/d  . 

     The procedure during one time step dt is controlled by the subroutine 
DTGEN, that performs the following set of operations: 
1) First the differential equation system (38) is integrated by means of a fourth 

step Runge–Kutta algorithm and using the pressure and mass flux values 
obtained in the previous time step, i.e. )t,z(G i y ),( tzp i . This operation is 

performed at subroutine RK4N that calls to the function FCN that contains 
the system of ordinary differential equation (38), to be integrated. In this 
way we obtain the fluctuations of the state variable values at time tt   i.e. 
࢚ሺ࢟ ൅  .ሻ࢚∆

2) The subroutine RK4N when it finish the standard fourth steps Runge–Kutta 
algorithm call to the subroutine FCN2, in this subroutine we use the values 
of the variables	࢟ሺ࢚ ൅  ሻ, to solve the equations (27) and (32). Proceeding࢚∆
in this way we update at tt   the mass flux )tt,z(G i   and the pressure 

),( ttzp i  at the node boundaries. At the end of these operations it is 

obtained the lower plenum pressure that will be used in the next time step 
for the integration of the recirculation loop equation. Then the new values 
are returned to the DTGEN subroutine that stores the computed values of all 
the state variables, and rename the variables to begin the calculation of a 
new time step. 

4 Dynamics results for a reference case 

To validate the dynamics model, we performed the reference case of the 
Vermont Yankee with the conditions of test  7N (64% Power, 32% Mass Flow 
Rate), and 7°C of sub-cooling at the channel entrance, see references [1, 13]. We 
assume to simplify the calculations that when the liquid enthalpy was close to the 
saturation value, then we assume bulk boiling conditions. At the boundary  
the fluid properties are the channel entrance boundary conditions i.e. 7°C of sub-
cooling. We notice that the dynamic quality is different from zero at the 
boundary number 3, or exit of the second node. This means that the inception for 
sub-cooling boiling takes places in node 2, exactly at a heigh of z1=15.28 cm 
inside the core active region. Because each node has a length of 14.26 cm, then 
the inception of the sub-cooling boiling is located 1.06 cm above the beginning 
of the second node. 
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     The void fraction reactivity coefficients for the conditions of  VY test 7N, 
were obtained by March-Leuba [12], and are given by the expression: 

32 1350140020701080
d
d 

 ....                        (39) 

     Using the boundary conditions for this test, it is observed the development of 
a limit cycle without using any multiplier for the reactivity. This means that the 
model predicts correctly the inception point of in-phase oscillations without any 
correction. Figure 1 displays the development of the limit cycle oscillations, the 
first 100 seconds are not displayed. Figure 2 displays the neutron population 
normalized i.e. n(t), versus the variations in the average (volume weighted) fuel 

temperature, )t(T~f  , when the limit cycle is fully developped. We observe in 

figure 2, that n(t) and )t(T~f , oscillate with some delay, i.e. when n(t) reach the 

maximum at n(t)=0.8 then 0)t(T~f  , and when )t(T~f attain its maximum 

value then n(t)=0 according to figure 2. 
 

 

Figure 1: Development of a limit cycle for Vermont Yankee test 7N model 
parameters and boundary conditions. 

 

 

Figure 2: n(t) versus )t(T~f when the limit cycle has been developed. 
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     It is observed that the void fraction in all the nodes oscillates in phase but 
with different amplitude, as displayed in figure 3. This last figure shows the void 
fraction variations )t(i , at the first two boiling nodes, located after the sub-

cooled boiling inception point. The oscillation with smaller amplitude is for the 
node with the water more sub-cooled. 
 

 

Figure 3: )t(i versus t for the first two nodes with boiling. 

5 Conclusions 

The development of a two-phase flow thermal-hydraulic model to study the in-
phase instabilities taking into account the spatial effects along the channel and 
the sub-cooled boiling has two main difficulties first we need to obtain the 
inception point for the sub-cooled boiling, and also to determine the bulk boiling 
boundary, and second the dynamic equations in the sub-cooled boiling region 
and the bulk boiling region are different. Also we must take into account that in 
the sub-cooled boiling region the liquid is not saturated and therefore during a 
limit cycle the liquid enthalpy can oscillate. However if the amplitude of the 
oscillations is small, then one can neglect the oscillation in the enthalpy in  
the sub-cooled boiling nodes, this approximation cannot be performed for large 
power oscillations. 
     We have checked that increasing the sub-cooling of the liquid at the channel 
entrance with this model the reactor becomes more stable for in-phase 
oscillations, and we need more reactivity gain to attain limit cycle oscillations. 
Also we have obtained that the direct coolant gamma heating has some influence 
in the decay ratio that cannot be neglected. These in-phase oscillations have a 
frequency between 0.38 and 0.5 hz depending on the boundary conditions. 
     The maximum amplitude observed for the normalized power oscillations for 
the reference case, is of 0.8, that for the reference case of 64% of rated power is 
equivalent to a power oscillation amplitude of 116%, because the scram level  
is not crossed, the limit cycle is developed at this operating conditions of 
P0=64% of the rated power and G0=32% of the rated flow. 
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