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Abstract 

The one-dimensional turbulent mass transfer was quantified using the nonlinear 
unclosed statistical governing equations derived from the traditional statistical 
methods. Further, this study considers the a priori simplifications of the bi-
modal Random Square Waves (RSW) approximation. This model enables the 
formulation of parametric equations for the variables of the statistical governing 
equations, but intrinsic aspects of this method still need to be clarified. In this 
sense, this study considers details of a version of the RSW equation for turbulent 
mass transfer which uses a constant reduction function. The mentioned details 
are related to discontinuities of higher order derivatives of the nondimensional 
concentration profile in the vicinity of a singular point. Numerical integrations 
were conducted at the air-water interface in both directions: from the liquid to 
the gas phase, and from the gas to the liquid phase. The results suggest that the 
continuity and smoothness of the calculated concentration profile does not 
depend on the discontinuities of the higher order derivatives, but the behaviour 
of the higher order derivatives depends strongly on the values of the 
nondimensional parameters existing in the formulation. Adequate boundary 
conditions were defined in the liquid phase, involving a new condition for the 
second derivative of the concentration profile. A fourth order Runge-Kutta 
method was used. This paper presents the proposed methodology; the 
comparison between results of calculated and measured concentration profiles,  
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the evolution of the profiles of the first, second and third space derivatives, and 
discussions concerning the adequacy of the results. 
Keywords: turbulent flows, interfacial mass transfer, RSW method.  

1 Introduction 

The quantification of turbulent interfacial mass transport is of practical interest 
in industrial processes and in environmental problems, like the absorption of 
greenhouse gases by the oceans, or the absorption of oxygen by rivers. Davidson 
[1] mentions that turbulence is better quantified through statistical methods, 
because there are still no alternative methods that allow quantifying turbulence 
for general practical applications. But even these methods are mathematically 
complex, because nonlinear unclosed statistical governing equations are 
generated. Thus, turbulence is still not definitively quantified, so that ad hoc 
models are used together with numerical codes to obtain predictions of turbulent 
flows and related transport phenomena. Among the possibilities of quantifying 
the turbulent mass transfer, the use of a priori simplifications on bi-modal 
Random Square Waves (RSW) proved to be promising. The method generates 
parametric equations for the variables of the statistical governing equations.  
     Schulz et al. [2, 3] made a distinction between a priori and a posteriori 
models, the first involving ideal turbulence records (Random Square Waves) and 
a finite number of correcting parameters; and the second involving ad hoc 
models for the products of fluctuations of the dependent variables. An a priori 
model sets the correcting parameters prior to the statistical calculations, so that 
all statistical products involve only these parameters. An a posteriori model 
defines new equations or physical parameters for the new fluctuation products 
that arise after applying the statistical procedures (sometimes called ad hoc or 
heuristic approximations).  
     The present study uses a bi-modal Random Square Waves approximation 
(RSW), already used by Janzen [4] Schulz et al. [2, 3] and Schulz and Janzen 
[5]. It is generally accepted, in interfacial mass transfer studies, that the 
molecular diffusivity is the most relevant transport mechanism close to the 
surface, while the turbulent transport becomes relevant below this region 
(Komori et al. [6]). When considering low soluble gases, the gas phase imposes 
the boundary conditions at the interface (saturation concentration, for example), 
while all transport calculations can be done for the liquid phase, involving both 
molecular and turbulent mechanisms (Schulz and Janzen [5], Herlina and Jirka 
[7], Janzen et al. [8, 9], for example). This is the situation considered in the 
present study. 
     Lopes Júnior [10] and Lopes Júnior and Schulz [11] analyzed the sensitivity 
of calculated profiles to variations in the boundary conditions. These studies 
considered the equation obtained for a constant reduction function, showing that 
some sets of parameters generate good solutions, while small modifications in 
the parameters could alter the results. The RWS equation obtained for a constant 
reduction function was then subjected to a more detailed study, concentrated 
around a singular point in the domain of calculus. The present paper shows 
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results of numerical integrations for the nondimensional concentration profile 
conducted in both directions: from the liquid to the gas phase, and from the gas 
to the liquid phase, using adequate boundary conditions. This approach allowed 
observing the features of the higher order derivatives of the concentration profile 
in the vicinity of the singular point.  

1.1 Governing equations 

The general one dimensional mass conservation equation, without sources and 
sinks is given by:  
 

𝜕𝐶̅
𝜕𝑡

=  𝜕
𝜕𝑧
�𝐷 𝜕𝐶̅

𝜕𝑧
−  𝑣𝑐����.  

 

(1) 
 
𝐶̅ and c are the mean concentration and the concentration fluctuation, 
respectively, 𝑣 is the vertical velocity fluctuation, t is the time, z is the vertical 
coordinate and D is the diffusion coefficient. Eqn (1) involves two unknown 
variables, 𝐶̅ and 𝑣𝑐���, so that “to close” this scalar transport problem needs an 
additional equation. An equation for the transport of 𝑣𝑐��� could be constructed 
using the instantaneous conservation equations, already knowing that new 
statistical products appear. In the present approximation, the general equation for 
central moments was used, as follows: 
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(2) 

 
Eqn (2) also reproduces eqn (1) for θ=1 (that is, the first order central moment). 
The second equation is obtained for θ=2 (the second order central moment), 
which involves 𝑣𝑐���, but also a number of new statistical parameters, showing that 
new equations are always needed (higher order moments). The RSW method is 
used here to obtain a closed set of equations. 

2 Methodology – random square waves 

The methodology is described in Schulz et al. [2, 3] and Schulz and Janzen [5]. 
The authors considered mass concentration fluctuations between the interface 
and the bulk liquid like those sketched in fig. 1, dependent on z and t. 
Fluctuations occur with values in the range between the upper and lower 
concentrations, Cp and Cn, respectively (fig. 2(a)). The methodology assumes 
that the turbulent records may be simplified through a random square wave, as 
schematized in fig. 2(b). The ideal oscillations vary between the extreme values, 
following a bimodal character. But real oscillations do not assume always this 
maximum amplitude, being necessary to impose a reduction, firstly done through 
the variables P and N shown in fig. 2(b), and further represented by a reduction 
function α. Additionally, concentration oscillations depend on the velocity 
oscillations, but it does not imply that both fluctuations are superposed in time. 
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So, a superposition coefficient, β, was also defined. Finally, the time fractions in 
which a point in space (z) is subjected to the upper or the lower concentrations 
were considered. It was shown that the time fraction for the upper concentration, 
denoted by n, which varies along z, corresponds to the normalized concentration 
profile. It was named “partition function”, because of the time partition between 
Cp and Cn. 

 

Figure 1: Random concentration field C(z, t) oscillating between the 
boundary functions Cp(t) and Cn(t). Adapted from Schulz et al. [2]. 

 

 

Figure 2: Sketch of a C record at a position z. (a) as shown in fig. 1, 
(b) simplified to a bimodal random square wave. Adapted from 
Schulz et al. [3]. 

2.1 RSW functions 

The partition function n, the reduction function α, the superposition function β, 
and the usual rms velocity may vary between the values presented in table 1. 
Eqns (1) and (2) were then transformed, through adequate operations involving 
n, α, β and �𝑣2��� (Schulz et al. [2, 3]), into a new set of equations for these 
functions. As can be inferred, four equations would be needed to have a closed 
set of equations. Because the equations are nonlinear, the four coupled equations 
may have no simple solution. The referred studies have shown that the basic 
functions β and�𝑣2���, appear always together, allowing writing a combined 
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Table 1:  Characteristics of the functions defined for one-dimensional scalar 
transport. Adapted from Schulz et al. [3]. 

Function n α β �𝑣2��� 

Dimension No No No Velocity 
Physical ground Partition Reduction Superposition Reference velocity 
Maximum value 1 1 1 Undetermined 
Minimum value 0 0 0 0 

 
function for them and reducing the previous system to a set of three equations. 
Further, the reduction function α was assumed as a constant (the version of the 
problem studied here), which reduced the system to two coupled equations. 
Finally, through simple substitution a single equation for n was obtained, as: 
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A=(1-α), k=K(z2-z1)2/D and z*=z/(z2-z1) are nondimensional parameters (see fig. 1 
for z2-z1). K is the interfacial mass transfer coefficient. Eqn (3) was solved here 
using the fourth order Runge-Kutta method, using convenient values of A and k.  

3 Numerical solution 

3.1 Some aspects of the “constant α” formulation 

In order to obtain a solution, adequate boundary conditions must be used. In 
practical applications the thickness of the boundary layer is defined as the 
position where the nondimensional concentration is 1% (that is, 99% of the 
concentration variation occurs inside the boundary layer). But no information of 
quantities like derivatives is furnished by this definition. Schulz et al. [2, 3], 
Lopes Júnior [10] and Lopes Júnior and Schulz [11] showed that different values 
of A, k, and derivatives of n as boundary conditions apparently furnish viable 
solutions for n, so that some criteria would be needed to restrict the multiple 
possibilities. The practical definition of the boundary layer was not used in the 
present calculations. Only when comparisons were performed, the definitions 
were unified. Instead, the following boundary conditions were considered here: 
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n(z*=0)=n(0)=1, n(1)=0, n’(1)=0. Using these values, eqn (3) allows obtaining a 
new boundary condition at z*=1: n”(1)=0 or n”(1)=k. The positive value n”(1)=k 
assures a global minimum for n at z*=1, which is physically expected.  
     Janzen [4] obtained experimental results for k in the range from 0.003 to 
0.004, used as reference for the present study. The system of equations derived 
from eqn (3) for use in explicit methods is given by: 
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The function f3 appears in the denominator of dw/dz*=(f1+f2)/f3, and annuls at  
 

𝑛 = 2𝐴−1+�4𝐴2+1
4𝐴

        or        𝐴 = 2𝑛−1
4𝑛(1−𝑛)

 . 
 

(5) 

 
Because A varies in the range [0, 1], f3 annuls for n in the range [0.5, ~0.809]. A 
theoretical solution exists for n using A=0, not subjected to the abovementioned 
restriction (Schulz et al. [2, 3], based on eqn 3). From eqn 3 it is possible to 
suggest an internal boundary condition at the position defined by eqn (5), as: 
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nd  is the value of n that satisfies eqn (5), and the subscript d indicates that the 
conditions are taken at the discontinuity (at the singular point). Eqn (6) assumes 
that the first parcel of eqn (5) is zero. However, in order to verify if realistic 
solutions may be expected for n, previous studies applied the Runge Kutta 
method to eqns (4) using all boundary conditions at z*=0 and z*=1. As 
mentioned, different sets of parameters seemed to produce viable solutions. 
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Having then obtained first solutions, the priority turned to verify how the internal 
aspects of the formulation allowed obtaining these solutions. Thus, the aim in 
applying explicit methods in the present study was to observe the behavior of the 
function n and its derivatives close to the point of discontinuity (singular point), 
verifying if the integration is possible, that is, if the integrals of higher order 
derivatives (second and third orders) may be viewed as cases of convergent 
improper integrals.  

3.2 Applying the method 

The Runge-Kutta method needs a value of the third derivative at the origin, in 
order to start the calculations. The origin was first chosen as the point (n, z*)= 
(0, 1), with the calculations advancing to (1, 0). The parameters k and A must be 
imposed. In this study, the values of k were 0.0029 and 0.003 (based on Janzen 
[4]). The value of n for the discontinuity (singular point) was maintained close to 
0.7 (in the range from 0.675 to 0.730). From eqn (5), A varied in the range from 
~0.398 to ~0.583. It was observed that, for the adopted k values, this range 
allowed obtaining solutions converging to n=1 at z*=0. The third derivative at 
z*=1 was chosen by trial and error, in order to attain n=1±0.1% at z*=0. In this 
sense, the third derivative was adjusted to fill the fixed boundary condition n=1 
at z*=0, and assumed values in the range of -0.04 to -0.03. It was thus necessary 
to “cross” the singular point (discontinuities of the higher order derivatives) 
during the calculations, but the obtained solutions for n were smooth and 
continuous. Fig. 3 shows the behavior of n, n’, n” and n”’, for k=0.003, 
A≈0.3982, and n”’(1) ≈ -0.0370. The iteration step was ∆ z*=1x10-3, the 
discontinuities occurred at zd*≈0.0784, and n(0) ≈1.0008. 
 

 

Figure 3: Smooth behavior of n, despite the discontinuities observed for 
higher order derivatives. k=0.003, A≈0.3982 and n”’(1) ≈-0.0370. 
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     As can be seen, n”’ tends to ±∞ around zd*. It do affects strongly n”, but it is 
not possible to infer that n” tends to -∞ at this position. Eqn (3) shows that the 
first parcel is undetermined at zd* (product of zero and ±∞, ideally being zero), 
so that a finite value for n” would be possible. In the sequence of the graphs, the 
first derivative appears as continuous, although the graph is not necessarily 
smooth (different slopes at both sides of zd*). The interfacial region is viewed as 
composed by sub-regions subjected to different transport mechanisms (see 
Herlina and Jirka [7] and Schulz and Janzen [5], for example); and different 
behaviors of the profiles, if representative of the phenomenon, should be 
correlated with these sub-regions. Despite the characteristics of the derivatives, 
the function n is smooth and continuous, following observed behaviors.  

3.3 Comparison with measured data 

The prediction of n shown in fig. 3 was compared with experimental data of 
Janzen [4]. In order to adopt the same vertical dimension for both sets of data, 
the usual definition of boundary layers was applied, that is, the nondimensional 
boundary layer thickness, δ=1, is attained at n=0.01. Fig. 4 shows that the 
calculated and measured n values present similar behaviors. 
 

 

Figure 4: Measured and calculated n. The practical definition of the boundary 
layer was used in nondimensional form (n=0.01 at δ=1.0). 

3.4 Refined calculations close to the singular point 

As mentioned, different values of A and k were tested. It was observed that 
different behaviors of the derivatives could be obtained. However, in all these 
cases, the n profiles showed smooth and continue characteristics. The mentioned 
behaviors are shown in figs. 5(a) and 5(b).  
     The differences observed between the graphs of figs. 5(a) and 5(b), mainly for 
the second and third derivatives, are a consequence of the different values of k 
and A adopted in the calculations. These parameters strongly affect the two 
derivatives, but do not affect the expected behavior of n.  
     In order to verify if the same behavior at the singular point could be observed 
performing the integration in both directions, from (0, 1) to (1, 0) and from (1, 0)  
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Figure 5: Smooth behavior of n, despite the behavior of the higher 
derivatives. (a) k=0.003, A=0.5465, n’”(1) ≈0.0338, n(0) ≈1.0001, 
zd* ≈0.0382; (b) k=0.0029, A≈0.4762, n’”(1)≈-0.0338, n(0)≈1.0000, 
zd* ≈0.0506, and in both cases ∆z*=1x10-3. 

 
to (0, 1), detailed calculations were done refining the iteration steps closer to zd*. 
In the present test, having started with ∆ z*=2x10-4, the calculations were refined 
using ∆ z*=4x10-8. The obtained left and right values of n and its derivatives in 
the vicinity of zd* are shown in table 2. Also shown are the values of A, k, n(0), 
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zd*, and the starting value of n”’(1). As can be seen, the third derivative tends to 
±∞, but the second derivative assumes apparent finite values at both sides (using 
the present ∆z*). The function n” must of course be perpendicular to the abscissa 
(z*), but not necessarily tends to ±∞
values may be consequence of the different slopes of n”’ at both sides of zd*. 
More refined calculations may lead to a single value, or to -∞, in which case the 
integral of the third derivative would not be an improper convergent integral. 
However, the integral of the second derivative seems to be convergent, because 
no major problems were observed for n’, which attained the same value from 
both sides of zd*, guarantying the continuity and smoothness of n.  

  . The difference between the left and right 

Table 2:  n and its derivatives for the test performed following the two 
directions: from liquid to gas and from gas to liquid.  

Test conditions: k=0.003, A≈0.3982, n’”(1)~-0.0371, n”’(0)~-938,36, n(0)~1.0000, 
zd*~0.05589370, first ∆z*=2x10-4, second ∆z*=4x10-8 

Left side N Right side 
z* = 0.05589368 0.674780213 0.674780198 z* = 0.05589372 

 n’  
z* = 0.05589368 -3.957550837 -3.95752447 z* = 0.05589372 

 n”  
z* = 0.05589368 3.884555433 0.70493587 z* = 0.05589372 

 n”’  
z* = 0.05589368 -30201330.1 10879429.5 z* = 0.05589372 

 
     The integration used ∆z*=2x10-4 until the values of 0.0558 (from left, 
beginning at 0.0) and 0.0560 (from right, beginning at 1.0) were attained. Then 
∆z*=4x10-8 was used until 0.05589368 (from left) and 0.05589372 (from right) 
were attained, generating table 2. Fig. 6 shows the scheme of this procedure.  
 

 

Figure 6: Schematic view of the refined steps around the singular point, zd*. 

     The results suggest that the general behavior of the n profiles does not depend 
on the behavior of the higher derivatives, although these derivatives depend on 
the values of k and A. Figs. 3 and 5, for n, show that variations are also observed 
in the profile of n, when k and A vary, but not affecting its general behavior (see 
fig. 7).  
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Figure 7: Comparison of n profiles for different conditions given by A and k. 

4 Conclusions 

The equations of one-dimensional mass transfer in turbulent flows expressed 
through the RSW approximation were tested for the case of a “constant reduction 
function”. In this case, the set of equations may be reduced to a single nonlinear 
equation, which shows a singular point in the domain of calculus.  
     In order to perform predictions of the nondimensional mass concentration (n) 
close to air-water interfaces, adequate boundary conditions were used, namely: 
n(0)=1, n(1)=0, n’(1)=0. This conditions allowed proposing the new boundary 
condition n”(1)=k, where k is a nondimensional mass transfer coefficient.  
     The third derivative of the nondimensional concentration profile shows 
behaviors tending to ±∞ at the singular point (equal signs or opposite signs are 
possible). These behaviors affect the second derivative. But the first derivative of 
the nondimensional concentration shows a continuous profile, which leads to a 
continuous and smooth profile for the nondimensional concentration itself.  
     Different tests were performed in both directions: “from the liquid to the gas 
phase”, and “from the gas to the liquid phase”. For the present calculations, 
viable results for the nondimensional concentration profiles were obtained, 
independently of the behavior of the second and third derivatives, which, on their 
turn, depend on the parameters A and k existing in the formulation. 
     Comparisons with experimental data of the literature show that the calculated 
profiles agree with the observed results of the nondimensional concentration 
profile. Because viable results were obtained, it suggests that at least the integral 
of the second derivative is a case of a convergent improper integral. 
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