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Abstract

Understanding the atomization of fire sprinkler sprays fills a critical gap in the
modeling of fire suppression systems. Previous research by the authors has shown
instability models and spatio-stochastic transport models can paint most of the
sprinkler spray picture, but require input in the form of thickness and velocity of
unstable fluid sheets. The model outlined makes use of a free streamline model
of the flow which can be constructed based on a description of the water jet as
a potential flow. The free stream-lines separating the jet from the surrounding air
take the form of vortex sheets with the air assumed to be at rest. Any solution so
obtained is an exact solution of inviscid flow equations with interior flow an exact
solution to the Navier-Stokes equations. There is considerable literature describing
two-dimensional free streamline flows, with most problems being solved through
the use of the hodograph method. In three dimensions, the hodograph method and
complex variable techniques are no longer available.Instead a mathematical model
can be formulated using Green’s functions in conjunction with free streamline
constant pressure assumptions regarding the surface of the flow. The resulting
mathematical model allows for the determination of a flow field over a sprinkler
head of arbitrary geometry and input conditions. Knowledge of the sprinkler head
flow field provides insight into the impact of sprinkler head geometry and fluid
velocity as well as providing the necessary inputs for a complete spatio-stochastic
model of fire sprinkler sprays.
Keywords: atomization, fire, fluid potential, free stream, Green’s function, spray,
sprinkler.
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1 Introduction

Sprinkler systems are a ubiquitous form of fire protection. Despite their
widespread use, analytical models to predict their performance have yet to be
developed. Furthermore, few detailed measurements to support the development
of these models are available. The performance of sprinkler sprays depends on
the spray generated by the sprinkler, the dispersion of the spray within the flames,
and the wetting of burning surfaces. Each one of these stages involves complex
transport processes resulting in important modeling and measurement challenges.
The current study focuses on developing models to predict the spray generated
by the sprinkler. Sprinkler sprays are generated in an impinging jet configuration
as shown in figure 1. The jet is transformed into a thin sheet as it impinges
on the deflector. This thin sheet becomes unstable as it moves radially outward
away from the deflector and ultimately breaks up into ring-like ligaments which
disintegrate into drops. The breakup of the sheet into drops is largely determined
by the thickness and velocity of the sheet at the deflector edge. In fact, physics
based stability models are available for predicting the sheet breakup from these
parameters (Wu et al. [1]). As a first step in predicting spray generation, a free
surface flow model is explored in the current study to predict the transformation of
the jet into thin sheets as it interacts with the deflector. This free surface model will
provide the important sheet thickness and velocity information required to predict
sheet breakup and ultimately drop formation.

The essential notion is to make use of the fact that a free streamline model
of the flow can be constructed based on the description of the water jet as a
velocity potential. Using the potential flow assumptions, the fluid velocity potential
solutions can be reduced to a boundary value problem. By forcing the velocity
potential to satisfy Laplace’s equation and specifying the values on all boundaries,
a complete velocity potential field within the boundaries may be realized. Any
solution so obtained is an exact solution of the inviscid flow equations, and the
interior flow is an exact solution of the Navier-Stokes equations.

The free streamlines separating the water jet from the surrounding air are taken
to be vortex sheets, and the air is assumed to be at rest. The method relies on the
fact that a Green’s function satisfying the potential flow equation and satisfying
appropriate boundary and symmetry conditions can be found. In mathematics,
a Green’s function is a specific type of function used to solve inhomogeneous
differential equations. It is a function which transforms a boundary value of a
function into the function’s response to the boundary value in all space.

There is a considerable literature describing two-dimensional free streamline
flows dating back to the late nineteenth century. These problems have typically
been addressed using the hodograph method, which uses the velocity components
as independent variables. Several of the classical solutions are described by
Lamb [2] and Batchelor [3]. These flows are typically characterized by the fact
that the solid boundaries are composed of straight line segments, while the free
surface is a streamline at a constant pressure. These qualities make i-t relatively
easy to determine the boundary shape in the hodograph plane, and the fact that
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Figure 1: Description of atomization process (sheet formation, sheet trajectory,
sheet break-up, ligament break-up) (Wu et al. [1])

the velocity components are functions of a complex variable makes conformal
mapping a powerful tool in constructing the solution.

In three dimensions the hodograph method is no longer available, nor is the
use of complex variable techniques. However, the potential flow still satisfies the
Laplace equation, and the free streamline is still a constant pressure surface. Thus,
formulation of the boundary value problem in terms of a Green’s function reduces
the problem to the determination of the shape of the free surface and the outflow
conditions on the deflector plate. This latter problem can be greatly simplified if
the two-dimensional solution for the flow through a bounded orifice (see Steckler
et al. [4]) is used to represent the outflow through the slot in each segment. The
mathematical formulation of this approximate model is discussed next.

2 Mathematical model

To begin, total flow through the boundaries of a sprinkler can be described by:

Q̇total = Q̇tine + Q̇slot (1)

Q̇total = α Q̇slot (2)

where Q̇total is the total flow impinging upon the sprinkler in the form of a jet,
Q̇tine is the total flow deflected by the sprinkler deflector plate, Q̇slot is the flow

.
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which passes through perforations in the deflector plate and α is the flow split,
which defines the fraction of the flow which passes through the deflector plate.

All flow composing Q̇total enters in the form of a jet of radius, Rj , and with a
uniform downward velocity, Uj . The entire problem can be posed in a cylindrical
coordinate system as follows:

~r = (x, y, z) = (r cos(θ), r sin(θ), z) (3)

The system in eqn (3) can then be nondimensionalized with Rj , resulting in:

~r∗ = (x, y, z) = (
r

Rj
cos(θ),

r

Rj
sin(θ),

z

Rj
) (4)

Further, velocity field and potential can be nondimensionalized as follows:

~u∗(~r∗) =
~u(~r∗)

Uj
φ∗(~r∗) =

φ(~r∗)

RjUj
(5)

For the remainder of the paper, we will drop the star notation of non-
dimensionalization.

The starting point is the assumption that the impinging jet velocity field ~u (~r)
can be described as a potential flow, satisfying the equation:

∇2φ (~r) = 0 ~u (~r) = ∇φ (~r) (6)

The local pressure change p− p∞ is determined by the Bernoulli equation:

ρ u2/2 + p− p∞ = H = ρU2
I /2 (7)

With these preliminaries established, the sprinkler boundary value problem can
now be formulated. The Green’s function we seek must be a solution to the
following equation:

∇2G (~r, ~ro) = δ (~r − ~ro) (8)

Here ~ro denotes the location of the mathematical source required by the Green’s
function and δ denotes the Dirac Delta function in three space dimensions. Now
consider the integral I(~r) defined by:

I (~r) =

∫ [
G (~r, ~ro) ∇2φ (~ro)− φ (~ro) ∇2G (~r, ~ro)

]
d3~ro (9)

The integral is taken over the entire volume encompassing the domain on which
the problem is posed. In the present case the volume is bounded by the surface
of the deflector plate and the free surface of the impinging water jet. The integral
I (~r) will now be evaluated in two different ways. First, note that from eqns (6)
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and (8):
I (~r) = −φ (~r) (10)

Second, I (~r) can be written in the form:

I (~r) =

∫
∇ · [G (~r, ~ro) ∇φ (~ro)− φ (~ro) ∇G (~r, ~ro)] d

3~ro (11)

Then, using the Divergence theorem:

I (~r) =

∮ [
G (~r, ~rs)

∂φ

∂n
(~rs)− φ (~rs)

∂G

∂n
(~r, ~rs)

]
d2s (12)

The integral in eqn (12) is taken over the surface that bounds the volume of
interest. Here, n is a local coordinate normal to the bounding surface pointing
outward from the volume, and ~rs denotes a point on that surface. finally,
eliminating I (~r) from the two expressions, a relation between φ (~r), its value on
the boundary, the fluid velocity normal to the boundary, and the Greens function,
is obtained.

φ (~r) =

∮ [
φ (~rs)

∂G

∂n
(~r, ~rs)−G (~r, ~rs)

∂φ

∂n
(~rs)

]
d2s (13)

The result presented above is very general, as no assumptions regarding the
specific boundary conditions or the shape of the boundary are needed to obtain it.
To proceed further, it is necessary to specify the information available to formulate
a specific boundary value problem relevant to the sprinkler jet impingement
on a given deflector plate. This requires a specific choice of Green’s function.
The starting point is the observation that the simplest Greens function satisfying
eqn (8), denoted here by G0 (~r, ro, θo, zo), is:

G0 (~r, ro, θo, zo) = −
1

4π

1

|~r − ~ro|
(14)

This solution does not satisfy any boundary conditions on any surface a finite
distance from the source. Next consider a source located a distance zo above a
planar barrier at z = 0 with prescribed outflow velocity through specified segments
of the barrier. The appropriate Green’s function is then:

G1 (~r, ro, θo, zo) = G0 (~r, ro, θo, zo) +G0 (~r, ro, θo, −zo) (15)

The new solution certainly satisfies eqn (8) in the half space above z = 0 and
also satisfies the condition of no normal gradient at the surface zo = 0. Thus,
since the velocity component normal to the barrier either vanishes or is prescribed
everywhere, the first term in eqn (11) vanishes and the solution everywhere in
z > 0 is given by the integral over those portions of the boundary where the
outflow velocity is known, with G replaced by G1. Note that G1 (~r, ro, θo, 0) =
2G0 (~r, ro, θo, 0).
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Based upon symmetry of the specific problem, the Green’s function given above
can be further adapted to capture appropriate boundary conditions. The above is
a general mathematical model suitable for all perforated deflector problems. In
the following section we will assume an axisymmetric simplification in order to
explore the possible forms of various boundary conditions.

3 Axisymmetric simplification

The above mathematical model is complete, but quite general. By making a few
assumptions, including that the sprinkler is axisymmetric and that slot flow can be
represented as two dimensional, we are able to explore boundary conditions and
their implications for the more general problem. Many of the geometric effects
induced by the details of the deflector plate geometry are lost in this approach, but
the influence of three basic dimensionless parameters can still be accounted for.
They are: the ratio of the impinging jet radius, Rj , to that of the deflector plate,
Rp, the ratio of the area of the openings in the deflector plate, Ao, to the nominal
area of the deflector plate, πR2

p, and the ratio of the radial position of the centroid
of the plate openings, Rc, to the deflector plate radius. The discrete openings in
the actual plate are smeared out uniformly with respect to the angular coordinate θ
and the radial location and width of the smeared locations can be chosen to match
the last two parameters mentioned above.

Once this task has been performed, the boundary conditions of φ(~rs) and its
normal gradient ~n · ∇φ(~rs) appearing in eqn (13) are independent of θ. All of the
bounding surfaces are now figures of revolution, and the only quantities containing
an angular dependence are the Green’s function and its normal derivative.

The appropriate Green’s function is now given by the angular integration of the
Green’s function presented in the previous section.

G (~r, ro, zo) = −
1

4π

∫ 2π

0

1√
r2 + r2o − 2rro cos(θ − θo) + (z − zo)2

dθo (16)

The quantity G physically represents a ring source of fluid situated at r = ro,
z = zo. Similarly, G1 represents a ring source situated at r = ro, z = zo located in
a semi-infinite space bounded below by the plane z = 0, where G1 was obtained
in the same manner from G that G1 was obtained from G in the previous section.
These functions can be evaluated in terms of complete elliptic integrals of the first
and second kinds, denoted respectively as K(m) and E(m).
G can be written explicitly in the form:

G (~r, ro, zo) = −
1

π
√
(r + ro)2 + (z − zo)2

K (m) (17)

m =
4rro

(r + ro)2 + (z − zo)2
(18)
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Figures 2 and 3 show the contour plot and streamlines associated with G1 for a
particular ring source.
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Figure 2: Plot of the Greens function G1 for a ring source placed at ro = 1.5; zo =
0.5.

3.1 Boundary values

The bounding surface consists of four parts; an inlet disk of radius Rj , the
bounding free streamline surface, a vertical cylinder of radius Rp and height h
(the vertical distance between the bounding free streamline and the deflector plate)
where the flow that does not pass through the deflector plate exits, and the deflector
plate itself. Because of the formulation of the problem as a surface integral, each
individual boundary can be evaluated individually, and summed to construct the
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Figure 3: Streamlines for the velocity field associated with of the Greens function
G1 for a ring source placed at ro = 1.5; zo = 0.5.

entire integral as follows:

φ(~r) = −(Ij(~r) + It(~r) + Ifs(~r) + Ip(~r)) (19)

I j(~r), I t(~r), I fs(~r), and Ip(~r) correspond to the integral I(~r), as defined
in eqn (12), evaluated on the surface of the inlet jet, tine (or flow that does not exit
through the deflector plate), free stream, and flow through the plate, respectively.

The first among these, Ij(~r), is evaluated at the inlet. An approximation of
the inlet flow as an axisymmetric jet with uniform velocity is appropriate for
the sprinkler problem. The inlet boundary can be taken to span 0 < r < 1 at a
constant height z = Lj/Rj . Following from eqn (6) we see that φ can be set to
0 at one arbitrary location without having an impact on the physical results of the
calculations. The inlet, having a uniform potential across the evaluated boundary,

where
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is an appropriate location. ∂φ/∂n has a value of -1, following from the definition
of the chosen non dimensionalization. Ij(~r) can be written as follows:

Ij(~r) =

∫ 1

0

−G1(r, Lj/Rj)dr (20)

Similarly, the flow exiting from the deflector plate, or Q̇tine, can be
approximated as a sheet of uniform velocity and fixed height above the deflector
plate, h. The tine boundary, It(~r), then exists at r = Rp/Rj and spans 0 < z < h.
∂φ/∂n has a uniform value of 1, following from the free stream approximation,
and φ is thus equal to s(Rp/Rj), where s(r) is the arc length of the free stream
from r = 1 to the radius, r. It(~r) can be written as follows:

It(~r) =

∫ h/Rj

0

G1(Rp/Rj , z)− s(Rp/Rj)
∂G1
∂n

(Rp/Rj , z)dz (21)

The surface integral over the free surface, Ifs(~r), spans from the
nondimensional position (r = 1, z = Lj/Rj) to (r = Rp/Rj , z = h/Rj).
A prediction for the shape of the free surface can be reached through a simple
analysis of the problem. From a simple mass balance we see that the stream line
should have the form:

r z =
1− α
2

(22)

Performing an asymptotic analysis for z >> 1:

r − 1 = A1 J1(λ1)e
−λ1z (23)

A 1 is some constant, J1 is the Bessel function of the first kind and λ1 is the
first root of J0 such that J0(λ1) = 0.

From analysis valid where r >> 1 and as z → 0 the flow field can be
approximated by an expansion of the Laplacian.

∂2φ

∂z2
+

1

r

∂

∂r

(
r
∂φ

∂r

)
= 0 (24)

φ = r +
f1(z)

r
+
f2(z)

r3
+ · · · (25)

The flow field can then be approximated:

φ = r − 1

2

z

r
+

1

4!

z4

r3
+O

(
1

r5

)
(26)

If we postulate a smooth shape with asymptotic results we can guess the free
surface has the form:

r − 1 = A

(
1− α
2

)
1

sinh(λ1z)
(27)

where A is a constant ensuring that eqn (27) conserves mass in the large z limit.
Figure has a plot showing the predicted free surface for α = 0.5 and an inlet height
and deflector radius of ratios Lj/Rj = Rp/Lj = 3.

where
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Figure 4: Shape of the free surface for α = 0.5 and an inlet height and deflector
radius of ratios Lj/Rj = Rp/Lj = 3.

Tangential velocity along the free stream is always equal to the nondimensional
inlet velocity, 1. φ, along the free stream must then always be equal to the arclength
function defined previously, s(r). ∂φ/∂n along the streamline, or the flow normal
to the surface, is by definition 0. Ifs(~r) can be written as follows:

Ifs(~r) =

∫ Rp/Rj

1

−s(r)∂G1
∂n

(r, f(r))dr (28)

f(r) is  the z value of the free surface as a function of r, found from
eqn (27), and ∂G1/∂n is defined by:

∂G1
∂n

= ∇G1 · n̂ (29)

n̂ is the unit normal vector to the free stream.
The final boundary, deflector plate itself, is situated at z = 0 and spans a

radius 0 < r < Rp/Rj .At z = 0, ∂G1/∂n is always equal to 0, meaning the
potential along the boundary is irrelevant. Fluid can only pass through the plate at
the location of the slot, meaning ∂φ/∂n = 0 at all locations except the slot. By
evaluating pressure through eqn (7) a velocity profile can be applied (see Steckler
et al. [4]). Ip(~r) can be written as follows:

Ip(~r) =

∫ Rp/Rj

0

Us(r)G1(r, 0)dr (30)

where

where
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Where Us(r) is the velocity profile determined.

3.2 Solution

Applying the above boundary conditions produces a solution for the velocity
potential, φ(~r), but requires the guessing of the flow split,α. The solution produced
will accurately predict the results of the initial conditions. This can be corrected
by iterating as follows. First, an approximate flow split based upon expected slot
behavior is guessed, and the surface integral evaluated for all boundary conditions.
When a solution for φ(~r) is found, pressure can then be evaluated at the slot again
through eqn (7). The newly evaluated pressure will produce a revised velocity
profile, and by eqn (2), a new flow split predicted. The above steps are iterated
until the flow split representative of the problem is converged upon.

4 Conclusions

A general model has been presented for determining the free surface flow field of
a jet impinging on a perforated deflector plate. This canonical configuration has
the essential features of the more complex deflector geometries found in real fire
sprinklers. The model consists of posing the velocity potential as a boundary value
problem and through the use of Green’s functions, describing the entire flow field.
The model was then specified to the axisymmetric case and formulation of the free
stream equation explored.

Modeling the free surface flow provides important overall information
describing the flow split between the radial flow leaving the deflector and the
flow directed downward through the perforations. Furthermore, critical detailed
information is provided by the model for predicting the drop characteristics
comprising the initial sprinkler spray. The free streamline flow formulation
is an attractive modeling alternative to Navier-Stokes based free surface CFD
approaches where first-principle models are used along with level-set methods
for treatment of the liquid-gas interface. The free streamline approach provides
solution of the liquid streams through boundary evaluation without the stringent
grid requirements that come from the need to resolve the liquid and gas flows at
the interface and elsewhere (especially when the interface location is unknown).

Future work will consists of evaluating the effect of sheet characteristics in the
axisymmetric configuration. Additional model development will include boundary
value formulation to capture the periodic geometry (i.e. tines and slots) typical of
real fire sprinklers
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