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Abstract

A novel technique is developed for solving multi-phase flows in unbounded
domains using the Diffuse Interface Model (DIM) in 1-D. It extends open
boundary conditions originally designed for the Navier–Stokes equations. The
non-dimensional formulation of the DIM makes it possible to generalize the
approach to any fluid. The equations support a steady state whose analytical
approximation close to the critical point depends only on temperature. This feature
enables the use of detectors at the boundaries switching between conventional
boundary conditions in bulk phases and a multi-phase strategy in interfacial
regions. The technique is applied to fluids experiencing a phase transition where
the interface between the phases travels through one of the boundaries. When
the interface crossing the boundary is fully developed, the technique greatly
improves results relative to cases where conventional boundary conditions can be
used. Limitations appear when the interface crossing the boundary is not a stable
equilibrium between the two phases: the terms responsible for creating the true
balance between the phases perturb the interior solution. The approach can be
extended to multiple spatial dimensions.
Keywords: multi-phase flows, open boundary conditions, diffuse interface model,
characteristics, interface-boundary interaction, Navier–Stokes.
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1 Introduction

The Diffuse Interface Model (DIM) offers the attractive feature to accurately
describe multi-phase flows with only one set of equations for the entire domain.
These equations are very similar to the Navier–Stokes (NS) equations but contain
additional terms to account for interfacial forces and energy conversion. However,
their numerical integration requires a very fine grid to capture the interface. This
grid needs to be truncated to reduce the computational costs. Truncating domains
while simulating infinite fields requires special boundary conditions, as waves
supported by the governing equations may be reflected by the boundaries and ruin
the interior solution.

In computational aerodynamics, the majority of the literature focuses on
open boundary conditions for the NS equations. Thompson [1] considered the
simplified linearized Euler equations at the edges with the approach developed
by Hedstrom [2]. Poinsot and Lele [3] combined the latter with the analysis from
Gustafsson and Sundstrom [4] to extend the boundary conditions for viscous flows,
and Sutherland and Kennedy [5] proposed a strategy for mixed component reactive
flows.

Despite the active research in designing open boundary conditions for the NS
equations, the extension to the DIM remains unsolved as two major features
prevent a straightforward application. In the simplest example where a fluid
experiences phase transition from liquid to vapor, a constant velocity field will
cause a moving interface, and the liquid will replace the vapor: the far field
boundary conditions change during the simulation. What is more, close to the
interface, the non conventional terms are dominant and present elliptic properties
that can undermine the previous approach.

This paper proposes boundary conditions for the DIM in one dimension that
minimize interface-boundary interactions. The latter modifies the conventional
formulation only in the multi-phase region.

In section 2, the DIM governing equations and the approximation of the steady
state are presented. Based on these equations, extension of the 1-D characteristics
is derived in section 3. Results of applying the proposed boundary conditions to an
interface convected by a constant velocity field are discussed in section 4. Three
domains are distinguished for the error analysis: the entire computational domain,
DC, subdivided into the region needed to apply the boundary conditions, DB, and
the domain of interest, DI = DC \DB. Conclusions and further developments are
discussed in section 5.

2 Implementation of the Diffuse Interface Model

In this section, the DIM governing equations and the steady state approximation
are presented. The integration numerical schemes are then discussed.
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2.1 Scaling quantities for the non-dimensional formulation

The formulation presented by Pecenko et al. [6] consists of three conservation
equations and the Van der Waals equation of state:

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρuu) = ∇ · (d + T )

(ρE)t +∇ · ((ρE)u) = ∇ · ((d+ T ) · u)−∇ · jF −∇ · jE

(1)

where ρ is the mass density, u the velocity and E the specific total energy.
The viscous stress tensor, d, is computed under the Newtonian fluid formulation.

The conduction flux, jF, is given by Fourier’s conduction law. The Korteweg
tensor, T , and the interstitial work, jE, account respectively for the interstitial
forces and work. They are computed using the expressions derived by Anderson
and McFadden [7] and Dunn and Serrin [8].

d = μ

(
∇u +∇u� − 2

3
(∇ · u)I

)

jF = −λ∇T

T = (−P + ρKΔρ+
1

2
K|∇ρ|2)I −K∇ρ⊗∇ρ

jE = K (ρ∇ · u)∇ρ

(2)

where μ is the dynamic viscosity, λ the thermal conductivity, T the temperature,
P the pressure, K the capillarity constant, and I the identity tensor.

The conventional energy formulation is extended to take into account the
modifications induced by the interfacial forces:

ρE =
1

2
ρ|u|2 + ρe+

1

2
K|∇ρ|2 (3)

where e is the specific internal energy.
The equations of state chosen by Pecenko to close the governing equations are

derived from the Van der Waals formulation:

P =
RTρ

M − bρ
− a

M2
ρ2 ⇒ e = cV T − a

M2
ρ (4)

where R is the perfect gas constant, M the molar mass of the fluid, b the molar
volume excluded by a fluid particle, a a constant modelling the interactions
between the fluid particles, and cV the specific heat capacity at constant volume.

The governing equations have been non-dimensionalized by introducing scaling
quantities. The scales for mass density, temperature, and pressure are the
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corresponding quantities at the critical point:

ρc =M/(3b) Tc = 8a/(27Rb) Pc = a/(27b2) (5)

The velocity and time scales are the average sound speed in the system and the
corresponding characteristic time:

uc =
√
Pc/ρc tc = L/uc (6)

where L is chosen to be the domain length.
These scaling quantities are reused in deriving the Reynolds, Weber, and Prandtl

numbers, as well as the reduced heat capacity:

Re = ρcucL/μ We = uc
2L2/(ρcK) Pr = μcV /λ c̃V =McV /R (7)

2.2 Steady state approximation

The governing equations support a steady state between two saturated phases.
Its approximation close to the critical temperature was derived by Cahn and
Hilliard [9]. The reduced mass density profile resulting from this approximation is
given by

ρ̃(x) =
ρ̃l + ρ̃v

2
+
ρ̃l − ρ̃v

2
tanh

(
2x̃

L̃i

)
(8)

where x̃ is the spatial coordinate, locating the interface at zero and the vapor and
liquid phases at −∞ and +∞, respectively. The reduced mass densities of the
saturated vapor and liquid phases are denoted by ρ̃v and ρ̃l, and L̃i is the reduced
interface length at the same temperature. The last three quantities completely
characterize the steady state and can be interpolated as functions of the reduced
temperature:

⎧⎪⎪⎨
⎪⎪⎩

ρ̃v(T̃ ) = 1.00− 1.86
√
1− T̃

ρ̃l(T̃ ) = 1.00 + 2.08
√
1− T̃

L̃i(T̃ ) = 2√
We

(
−0.19 + 1.65/

√
1− T̃

) (9)

For the rest of the paper, the non-dimensional form is used but the tilde will be
dropped for better readability.

2.3 Space and time discretization

The governing equations are discretized on a uniform Cartesian grid with size Δx.
The space and time discretization methods were used by Pecenko et al. [6]. The
approach was designed by Cockburn and Gau [10], by relying on a Runge–Kutta
scheme developed by Shu and Osher [11].

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 79, © 2013 WIT Press

118  Computational Methods in Multiphase Flow VII



The grid size is chosen to ensure that the interface is captured with at least ten
grid points. The maximum time step, Δt, has to satisfy:⎧⎪⎪⎨

⎪⎪⎩

(
|u0|±c0
2Δx +

√
ρ0√

4WeΔx4

)
Δt ≤ 1.5Γ

4Δt
RePrΔx2ρ0

≤ 2.5Γ

2Δt
ReΔx2ρ0

≤ 2.5Γ

(10)

where u0 and ρ0 are the reduced velocity and mass density of the point whose
equilibrium is studied, and c0 is the reduced speed of sound evaluated at the same
point. The empirical constant, Γ, is a safety factor to remain inside the stability
region of the Runge–Kutta scheme. It has to be lower than one.

3 Adaptation of the 1-D characteristic boundary conditions

One-dimensional characteristics have been widely used in literature to specify
open boundary conditions in computational aerodynamics. In the following, its
extension to the DIM is presented in 1-D.

3.1 Identifying the non-hyperbolic region for the Diffuse Interface Model

Similar to the Navier–Stokes equations, the speeds of the waves supported by the
DIM governing equations are

{
u,u−

√
β,u+

√
β
}

with β = 2

(
P

ρ
+

4T (3 + cV (−3 + 2ρ))

cv(−3 + ρ)2

)

The speed of two of the waves becomes complex when β is negative.
This property undermines the application of the conventional 1-D characteristic
boundary conditions. The corresponding regions are identified in grey on the ρ-
T diagram in Figure 1. It lies inside the multi-phase domain for a finite cV and
fits perfectly on top of the transition curves as cV → ∞ (isothermal limit).
Consequently, the 1-D characteristic boundary conditions can only be applied
outside the multi-phase domain. When the interface moves closer to the boundary
points, a different approach is discussed below.

3.2 Designing a buffer layer absorbing the non-hyperbolic region

We will explain the extension of the 1-D characteristic boundary conditions by
recalling the simple example of a fluid experiencing phase transition from vapor
to liquid and convected by a constant velocity field. Figure 2 depicts the different
steps. The upper graphs present the mass density profiles, and the lower pictures
indicate the position of the detectors. The role of these detectors will be explained
in the following paragraphs.

The simulation mass density profile is indicated by the continuous line. The
corresponding reference case run on a much larger domain is depicted in dashed
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Figure 1: DIM non-hyperbolic region (in grey) for cV = 3.05 (water).
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Figure 2: Application of the modified boundary conditions to the DIM.

black for the comparison onDI. The latter is delimited by the vertical dashed lines
whileDC is indicated with vertical continuous lines. These two types of boundaries
are not placed on top of each other at the beginning as boundary points are required
for the spatial discretization scheme. These boundary points are initially located
in the bulk phases where the governing equations exhibit hyperbolic properties.
Therefore, the 1-D characteristic boundary conditions can be applied in these
regions.

As the simulation runs, the velocity field, initialized as constant, convects
the interface to the right. When the interface tries to cross the boundary, the
equilibrium inside the elliptic region has to be maintained to prevent it from
influencing the interior solution. This equilibrium is ensured by enlarging DC.
The buffer layer creates a smooth transition between the single-phase boundary
conditions (conventional 1-D characteristic) and the multi-phase region at the edge
of DI.
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Based on the method of characteristics, the expression of the additional points
is given by

∂U

∂t
+A

∂U

∂x
= 0 ⇒ Ux,t+dt = R

⎛
⎜⎝

L1Ux−λ1dt,t

L2Ux−λ2dt,t

L3Ux−λ3dt,t

⎞
⎟⎠ (11)

where L and R are the left and right eigenvectors of the matrix A while λi are
the eigenvalues. The matrix A is defined by retaining only the transport terms in
the DIM governing equations. The eigenquantities are evaluated at the boundaries
of DI. If the location corresponding to (x − λidt) is inside DC, the vector of
conservative variables, U , is interpolated. Otherwise, Ux−λidt,t is calculated
using the boundary conditions imposed in the far field.

The creation of the buffer region is triggered by increasing detectors. They are
depicted by circles on the lower graphs. As they should prevent the multi-phase
region from reaching the boundaries of DC, they are always located upstream of
its edges: their position is updated as the buffer region is extended. The detection
of the approaching multi-phase region is performed by computing the temperature
and checking if the mass density lies within the range [ρv+ε, ρl−ε]. The saturated
vapor and liquid densities are computed using equation (9) and ε is equal to
0.01(ρl − ρv).

As the simulation runs, the interface continues to enter the growing buffer
region. However, the domain cannot be extended infinitely. The removal of the
buffer layer has to be addressed while minimizing the interactions between the
interface and DI. Deleting detectors are always located at the edges of the latter.
They are depicted by squares on the lower graphs. When the density lies outside
the range [ρv+ε, ρl−ε], the DIM governing equations exhibit hyperbolic properties
at the boundaries of DI and the deleting detectors trigger the removal of the buffer
layer.

4 Numerical example

The initialization procedure for the test case is first discussed. The performance
of the extended boundary conditions on this test case is then evaluated. The main
sources of perturbation induced by the extended boundary conditions are identified
for the specific case T = 0.95 and u = 0.1. The analysis will be extended to the
range of temperatures T ∈ {0.95, 0.99, 0.995, 0.999}.

4.1 Description of the test case

4.1.1 The reference case
The waves supported by the governing equations have well-defined propagation
speeds: {Mf,Mf − 1,Mf + 1} where Mf is the mean flow Mach number. For
a specific simulation duration, the domain size of the reference case can be
determined to prevent the travelling waves from bouncing back into DI before
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the end of the simulation, td. Denoting by LDI the size of DI, the domain size of
the reference case, Lref, should satisfy:

Lref ≥ LDI + (|Mf|+ 1)td (12)

4.1.2 The initial conditions
The initial conditions model an interface between vapor and liquid travelling at
a constant velocity. The temperature field is originally set to a constant. The
corresponding saturated mass densities and interface length are computed using
equation (9). The initial density profile is then computed using equation (8). The
interface is located at the center of the domain, x = 0.5.

When the temperature comes close to its critical value, the interface length
increases. In order to prevent boundary effects from the interface in the beginning
of the simulation, the size of the domain of interest is increased proportionally to
the interface length:

LDI = 10Li(T ) (13)

4.1.3 The total duration and the error computation
The total duration of the simulation is determined to allow the interface to leave
DC. The distance separating the boundary of DI from the final position of the
interface is chosen as two times the width of the interface. From this distance and
the initial velocity field, the total duration is deduced.

The relative error is computed by

error(t) = max
x∈DI

[ |ρ(x, t)− ρref(x, t)|
ρref(x, t)

]
(14)

where ρ and ρref are the reduced mass densities computed by the simulation and
the reference case.

4.2 Performances of the conventional and extended boundary conditions

For the test cases, the reduced heat capacity of water is chosen: c̃V = 3.05.
As depicted on Figure 1, this value allows the use of the conventional 1-D
characteristic boundary conditions in the multi-phase region but only for a limited
range of temperatures, including T ∈ {0.95, 0.99, 0.995, 0.999}.

Table 1 depicts the maximum error reached in DI during the simulation. For the
conventional boundary conditions, the interface crossing the boundary is treated
as a simple wave. This approach creates reflected waves perturbing the interior
solution. As for the extended boundary conditions, the sources of errors are
identified in the next part.

4.3 The error main characteristics

The error induced by the extended boundary conditions shows a characteristic
evolution in time. Figure 3 depicts the maximum error insideDI (continuous black
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Temperature Error conventional b.c. Error extended b.c.

0.95 6.5× 10−1 7.4× 10−3

0.99 4.7× 10−2 1.8× 10−4

0.995 1.2× 10−2 3.5× 10−5

0.999 1.4× 10−3 1.0× 10−5

Table 1: Conventional and extended boundary conditions comparison.

line) and the x-coordinate where this maximum is reached (light line with squares)
for the simulation T = 0.95 and u = 0.1. Both quantities are plotted as functions
of time. We identified six phases:
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Figure 3: Error induced by the extended 1-D characteristic b.c.

• 0.025 < t < 0.05: away from the critical temperature, the initial mass
density profile approximates the equilibrium between the two phases.
Therefore, energy waves are created at the center and travel inside DI. As
the interface is convected by a constant velocity field, the wave propagating
with increasing x reaches the right boundary before the one travelling with
decreasing x arrives at the left side. As the boundaries are not perfect, part
of the wave is reflected. The error coming from the left side is larger than
the one coming from the right side: two components of the characteristics
are provided on the left while only one is supplied at the right boundary.
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• 0.05 < t < 0.1: the waves reflected at the boundaries influence the interior
solution. As the interface equilibrium is very sensitive to perturbations, it is
the major source of error with the left side.

• 0.1 < t < 0.375: the maximum error is located at the interface center.
• 0.375 < t < 0.71: the sudden increase of the error corresponds to the

increase of the computational domain as the interface comes closer to the
boundary. This extension requires information from the far field. The larger
perturbation at the edge travels inside DI and modifies the equilibrium.

• 0.71 < t < 0.79: the sudden drop in the error at t = 0.71 is caused by
the interface leaving the domain of interest. The interface is still inside the
computational domain but confined inside the buffer region. Its influence on
the domain of interest is limited to heat conduction.

• 0.79 < t < 1: at t = 0.79, the buffer region is removed. The perturbation
originates from the conventional boundary conditions applied at the edge of
the domain: they treat the parabolic effects caused by the heat dissipation
terms as waves.

This analysis can be extended to T ∈ {0.95, 0.99, 0.995, 0.999}. The error
increases when the initial temperature moves away from the critical value as the
initial mass density profile is a larger approximation of the equilibrium.

5 Conclusion

This paper focused on the extension of the 1-D characteristic open boundary
conditions designed originally for the Navier–Stokes equations to the DIM in
1-D. Detectors are located at the boundaries and switch between the conventional
single-phase boundary conditions and a multi-phase strategy.

Applications are made to the example of a fluid experiencing phase transition
and convected by a constant velocity field. Compared to the use of the conventional
boundary conditions where the ρ–T diagram enables them, the additional multi-
phase strategy improves results. The test case at T = 0.999 demonstrates that a
fully developed interface can cross the boundaries with little effects. When the
interface crossing the boundary is no longer fully developed, parabolic effects are
the main sources of error and limit the applications. More research is needed for
cases where these effects are dominant.

The approach developed can be extended to 2-D. Detectors are now placed
along a closed loop path at the boundaries. When the increasing detectors watch
an approaching bubble, the buffer region should adapt the computational domain
with local 2-D extensions. The latter may complicate the implementation: the
buffer region requires a dynamic data structure in 1-D to cut memory costs and
the computation of the fluxes requires knowledge of the neighboring grid points.
For the removal, the decision has to be made by a segment of deleting detectors. In
the case of 3-D implementation, one can take advantage of the structure developed
in 2-D by considering the 3-D computational field as a stack of 2-D fields.

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 79, © 2013 WIT Press

124  Computational Methods in Multiphase Flow VII



Acknowledgement

This research is supported by the Dutch Technology Foundation STW

References

[1] Thompson, K., Time dependent boundary conditions for hyperbolic systems.
J Comput Phys, 68(1), pp. 1–24, 1987.

[2] Hedstrom, G., Nonreflecting boundary conditions for nonlinear hyperbolic
systems. J Comput Phys, 30(2), pp. 222–237, 1979.

[3] Poinsot, T. & Lele, S., Boundary conditions for direct simulations of
compressible viscous flows. J Comput Phys, 101(1), pp. 104–129, 1992.

[4] Gustafsson, B. & Sundstrom, A., Incompletely parabolic problems in fluid
dynamics. SIAM J Appl Math, 35(2), pp. 343–357, 1978.

[5] Sutherland, J. & Kennedy, C., Improved boundary conditions for viscous,
reacting, compressible flows. J Comput Phys, 191(2), pp. 502–524, 2003.

[6] Pecenko, A., van Deurzen, L., Kuerten, J. & van der Geld, C., Non-isothermal
two-phase flow with a diffuse-interface model. Int J Multiphase Flow, 37(2),
pp. 149–165, 2011.

[7] Anderson, D. & McFadden, G., A diffuse-interface description of internal
waves in a near-critical fluid. Phys Fluids, 9(7), pp. 1870–1879, 1997.

[8] Dunn, J. & Serrin, J., On the thermomechanics of interstitial working. Arch
Rational Mech and Anal, 88, pp. 95–133, 1985.

[9] Cahn, J. & Hilliard, J., Free energy of a nonuniform system. i. interfacial free
energy. J Chem Phys, 28(2), pp. 258–267, 1958.

[10] Cockburn, B. & Gau, H., A model numerical scheme for the propagation of
phase transitions in solids. SIAM J Sci Comput, 17(5), pp. 1092–1121, 1996.

[11] Shu, C.W. & Osher, S., Efficient implementation of essentially non-
oscillatory shock-capturing schemes. J Comput Phys, 77(2), pp. 439–471,
1988.

.

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 79, © 2013 WIT Press

Computational Methods in Multiphase Flow VII  125




