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Abstract

This work deals with modelling the motion of plasma by defining transport
equations for neutral particles, ions and electrons. Describing the electric current
inside an electric arc with the motion of electrons, the heating effect results from
the ionisation and internal collisions inside this flow. For example, an internal
collision of an electron and neutral particle decreases the number of neutral
particles and increases the number of ions and electrons. So ionisation is modelled
by multiphase flow.
Keywords: Euler/Euler approach, molecular flow, particle class transport, charge-
carrier interaction, Coulomb repulsion.

1 Introduction

The collision rate of single particles is described with the collision area (Fig. 1)
at the bottom of a collision cylinder (e.g. [1]). The cylinder bottom shows the
collision area, where the rate of velocity changing particles is defined.
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In this case the collision area only depends on the size of the particle (e.g.
[2, 3]). Considering the Coulomb repulsion (Fig. 2) the effective collision area
is increasing [4]. The motion of a complete plasma would be described with
different charge carrier types and additional attraction and repulsion forces
between different particles inside this mixture [5,6]. So electrons, ions and neutral
particles have to be divided in different particle classes of charge carriers. So this
plasma is modelled like a multi-fluid model [7, 8].
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Figure 1: Collision cylinder around the particle centre M.
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Figure 2: Path of a particle α through the electric field of particle β.

The definitions of all used variables are shown in nomenclature tables
(Tables. 1–4). The index α is used for the different particle classes of electrons
(e), ions (1) and neutral particles (0).

2 Governing equations

Basically three transport equations have to be solved for each particle class.
Therefore the balance equations are averaged conservations equations weighted
with the particle number density nα of the corresponding particle class [9]:
electrons (α = e), ions (α = 1) or neutral particles (α = 0). The mass balance
equation is defining the change of particle number density:

∂

∂t
(nαmα) +

∂

∂xj
(nαmαuα,i) = Sα. (2)
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Table 1: Small Latin letters.

b eccentric collision offset e elementary charge

f, fc Boltzmann velocity distribu-
tion of particles before colli-
sion

f ′, f ′
c Boltzmann velocity distribu-

tion of particles after collision

h Planck constant
(6.626 · 10−34Js)

kB Boltzmann constant
(1.381 · 10−23J/K)

kion ionisation rate krec recombination rate

mα particle mass of α nα particle number density of α

�r position vector rα particle radius

�uα particle velocity t time

Table 2: Large Latin letters.

Iα interaction forces M,Mc centres of colliding particles

Ncoll number of collisions Qα energy source

Sα mass source Tα particle temperature

W
(n)
β degeneracy of states for the n-

ions
Eα particle energy

Table 3: Small Greek letters.

α, β particle classes: 0 (neutral), 1
(ion) and e (electron)

ε, φ variable angle

ε0 electric permittivity (in vac-
uum)

�ξr relative particle velocity

χ ionisation rate ωc,αβ collision frequency of (α, β)

Table 4: Large Greek letters.

Λ Coulomb logarithm argument Φα momentum diffusion flux ten-
sor

Ω domain volume
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Inside this equationmα is the particle mass, �uα the averaged particle velocity and
Sα the source term of the particle class. The source terms

S0 = m0(−n0nekion + n1n
2
ekrec) (3)

S1 = m1(n0nekion − n1n
2
ekrec) (4)

Se = me(n0nekion − n1n
2
ekrec) (5)

depend on the class concentration and the separately modelled specific ionisation
rate kion:
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and recombination rate krec:
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Also the momentum balance
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and the energy balance are explained in detail next chapter:
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(9)
With these three equations for each phase, electrons, ions and neutral particles,
mass, momentum and energy balance is given.

3 Momentum and energy diffusion

Describing momentum and energy transport in detail the momentum diffusion
(e.g. [10]) is given with the diffusion tensor:
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depending on the internal collision frequency of neutral particles:

ωc,00 = 16π

√
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n0r
2
0 (11)

and charge carriers:
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The electric repulsion changes the interaction forces and the effective collision
area depending on the Coulomb logarithm 5 < lnΛ < 20. The momentum source
terms:

�I0 = n0(ωc,0e(me�ue −m0�u0) + ωc,01(m1�u1 −m0�u0)) (14)

�I1 = n1(ωc,1e(me�ue −m1�u1) + ωc,10(m0�u0 −m1�u1)) (15)

�Ie = ne(ωc,e0(m0�u0 −me�ue) + ωc,e1(m1�u1 −me�ue)) (16)

depend on the inter-phase collision rates of charge carriers with neutral particles:
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and attracting charge carriers with opposite load:
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The frequency describes the collision rate of a particle with the first index
against a particle of the second index type.

Computational Methods in Multiphase Flow VII  29

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 79, © 2013 WIT Press



The source terms of the energy equation also depend on collision rates, which
are described in the context of the energy diffusion:

Q0 = n0(ωc,0e(meEe −m0E0) + ωc,01(m1E1 −m0E0)) (23)

Q1 = n1(ωc,1e(meEe −m1E1) + ωc,10(m0E0 −m1E1)) (24)

Qe = ne(ωc,e0(m0E0 −meEe) + ωc,e1(m1E1 −meEe)). (25)

With these terms the complete influence of electric load is shown developing
transport equations for neutral and charged particles. Each class has a different
particle temperature Tα, which represents the velocity variance and herewith a
kind of absolute particle velocity square. The electric current and the voltage is
modelled by the charge-carrier number density decrease over the length inside the
plasma is computed with the solution of the balance equation.

Figure 3: Ionisation rate as a function Figure 4: Recombination rate as a func-
tion of electron temperature.

Figure 5: Computational grid with Figure 6: Voltage (V ) decrease over
cathode length.

of    electron temperature.

centre cathode.
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Figure 7: Voltage V decrease over Figure 8: Electron velocity m/s over
ring-shape gap.

4 Results

Finally the electric discharge of a plasma inside a ring-shape gap (Fig. 3) is
modelled with the described set of differential equations. The cathode is in the
system centre. At the front the electric boundary condition is given with the electric
electron flux with an electric current of 30A. Beyond the gap an electric neutral
anode is positioned. The results show the truly modelled decrease of electron
number density from the cathode to anode. These values are computed using
spectral averaging methods and defining transport equations for class specific
conservations equations [11,12]. Therefore the electric current through a complex
plasma is modelled with a multiphase approach of different particle classes.
Herewith the transport equations are solved for each particle class, so nine
transport equations at all.

With computed energy and temperature of each particle class the relative particle
velocity is given for the computation of collision and ionisation rates. So the
electron temperature is the only parameter, that influences the ionisation and
recombination rate. With increasing electron temperatures the ionisation rate is
also increasing (Fig. 3) and the recombination rate is decreasing (Fig. 4). The
electrons are accelerated from the inner core in radial direction with a center
cathode and a surrounding ring anode analysing a geometry (Eq. (3)). The voltage
decrease of the electric potential inside the cathode is visible (Fig. 6). The electric
potential on the inlet side is higher.

The region direct at the cathode surface is be called acceleration zone. The
acceleration of electrons near the cathode surface show the hight potential
gradients in this region (Fig. 7). The potential is represented by the number density
and the electric load of electrons and ions in these domains. The acceleration is
shown in the same regions. These regions are defined by the velocity gradient
maximum (Fig. 8). At the ring-shape flow inlet (bottom in Figs. 7 and 8) the mean
radial velocity of electrons is higher because of the lower radial potential decease
at the outlet (top in Figs).

ring-shape gap.
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5 Conclusions

A plasma flow is computed in detail with the present transport equations. Therefore
the number density, the velocity and the specific temperature is calculated by
solving the corresponding balance equations. The degree of ionisation and the
absolute electric voltage is computed with the electron and the ion temperature.
The charge-carrier mass flow is the boundary condition. this condition is
prescribed by the electric current. The electric voltage inside the ring-shape gap
results from the charge-carrier number density gradients. With this model electric
flux is computed with an Euler/Euler approach derivative.

The continuity is given by three mass conservation equations of electrons,
ions and neutral particles. Ionisation and recombination is modelled with source
and sinks terms in each particle class. The sum of all source and sink terms
is zero. The momentum equation depends on the diffusivity coefficients. The
diffusivity depends on two classes of collision coefficients: the inner-class collision
coefficients and the inter-class coefficients. The inter-class collisions of electrons
and neutral particles indicate the ionisation rate of the plasma. With an increased
degree of ionisation the level of ions become steady and the ionisation and
recombination rates become zero. The rates depend on the particle temperature.
This is equivalent to the kinetic energy.

The mechanic and electrodynamic forces are developed in a comparable way
with a set of conservation equations for each particle class. Electron, ion and
particle temperature are computed with the energy transport equation. So this
energy describes the collision and ionisation rate and very complex processes,
whose are computed with highly coupled models normally, are computed with
a multi-fluid-like procedure.
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