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Abstract

This work deals with the computational modelling of the mass transition of
evaporating liquid drop-laden gas flows. In the present study the evaporation
model due to Abramzon and Sirignano (1989) has been extended by introducing
an additional transport equation for a newly defined quantity a, defined as the
phase-interface surface fraction. This allows the change in the drop diameter to
be quantified in terms of a probability density function. The source term in the
equation describing the dynamics of the volumetric fraction of the dispersed phase
αD is related to the evaporation time scale τΓ.
Keywords: Euler/Euler approach, Euler/Lagrange approach, gas/liquid flow,
evaporation model, heat and mass transfer, volume and surface fraction.

1 Introduction

The dimensionless numbers characterizing the heat and mass exchange process are
Nusselt numberNu and Sherwood number Sh. Several models (e.g. Renksizbulut
and Yuen [1] and Park et al. [2]) are based on the correlation model of Ranz and
Marshall [3] and have been developed to model the parameters. The evaporation
rate model of Abramzon and Sirignano [4] considers additionally the latent
heat flux of the evaporated liquid leaving the droplet. The correct capturing of
the gas phase humidity requires the liquid vapor mass ratio Y , influenced by
convective, conductive, turbulent and thermal diffusive effects, to be computed
from an appropriate transport equation in addition to the equation governing the
temperature field T .

In an evaporating process the mass transfer rate on the drop surface depends on
the drop size. The polydispersed spray consists of drops with different diameters.
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Figure 1: PDF of a normalized particle drop diameter in a polydispersed spray.

To determine the mass transfer, i.e. the evaporation rate for such a case, the drop
diameter distribution of the spray is necessary. Using the following approach
based on a particle diameter probability density function (PDF) (see Fig. 1 for
its graphical representation):
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with the volumetric fraction α and the newly defined variable ā being the phase-
interface surface fraction,

α =
Vliquid

(Vliquid + Vgas)
a =

Aphase interface

(Vliquid + Vgas)
(3)

the mass transfer rate are calculated as shown in the further work. The expectation
values of the squared and cubic diameters in terms of the Sauter mean diameter
only, result from this modelled PDF (eq. 1), e.g. Groll et al. [5]:
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16
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A time dependent relation has to be defined to calculate the change of the drop
diameter when simulating motion of a polydispersed phase. The change of the
expectation value of the diameter squared is presumed to be constant in accordance
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to the d2-law (Kastner [6]):

d
dt

E
(
D2p
)

= −Γ. (5)

Integration of this equation results in the time-dependent solution for the drop
diameter:

Dp(t) =
√
D2p(0) − Γt. (6)

Substitution of the expectation value with the given density function definition
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(7)

reveals that the deviation of the Sauter mean diameter depends on the evaporation
constant of the d2-law. Based on this formulation, the following equation has been
derived:
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With this expression, the time-dependent change of an expected drop volume is
defined. The outcome of the last equation is used for the determination of the mass
transfer of a drop with the expected mass m̄p:

dm̄p

dt
=
π

6
ρD d

dt
E
(
D3p
)

= −π
4
ρDD32Γ. (9)

Based on the evaporation model due to Abramzon and Sirignano [4], the mass
transfer rate at the surface of a drops cloud representing a function of the modified
Sherwood number Sh∗ and the mass transfer coefficient BM is to be determined
by using the following equations:

ṁ = πD21ρ
CDαβSh∗ln (1 +BM ) (10)

The definitions of the Sherwood number and its modification and the mass
transfer coefficient are given in Section 3. By equalizing the PDF-dependent
mass transfer rate and the modelled mass transfer rate, the evaporation factor
Sh∗ln (1 +BM ) in the model of Abramzon and Sirignano [4] is defined as:

π

4
ρDD32Γ = −ṁp = ṁ = πD21ρ

CDαβSh∗ln (1 +BM )

⇒ Γ = 4
D21
D32

ρC

ρD
DαβSh∗ln (1 +BM ) . (11)

In accordance to the d2-law, the evaporation constant should be independent of
the particle diameters. This fact brings an additional constraint to the expectation
values of the probability function: D21/D32 =const. The given PDF fulfills this
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condition as follows:
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. (12)

With the proposal of Abramzon and Sirignano, the time-dependent modelling
of the drop diameter probability function is closed. Combining this information
with the relation of the change of the specific volume α and the specific surface a,
described in section 2, the transport equations are developed.

2 Evaporation progress

The model developed serves for calculation of the evaporation rate of spherical
water drops. Water is a liquid dispersed phase, which satisfies the d2-law (e.g.
Kastner [6]). Keeping in mind the definition of the life time of a drop T and its
diameter loss rate, it is known, that each drop with a diameter

Dp < (ΓT )
1
2 (13)

is evaporated completely. To determine the number of the evaporated drops in a
cloud, the probability density function has to be integrated in the following way:
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Consequently, the time change of the particle number is obtained as follows:
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The time change of the volumetric fraction ᾱD is calculated by using the results
represented by Eqs. (8) and (15):
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The time change of the Sauter mean diameter (Eq. 2) consists of the deviations
of the volumetric fraction and the surface fraction:
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6
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(18)

Utilizing the results following from the Eqs. (7) and (17), the change of the
surface fraction can also be formulated in terms of the evaporation constant and
the Sauter mean diameter:

1
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The source terms of the α-equation (Eq. 17) and the a-equation (Eq. 19) stay in
following relationship:

1
ᾱD

dᾱD

dt
=

5
4
· 1
ā

dā
dt
. (20)

Obviously, the source terms in both transport equations can be formulated in
terms of the same parameter: τΓ (Eq. 23). With the definition of the particle
diameter probability density function as the starting point, the evaporation process
is finally modelled by the following two transport equations:

∂t

(
ρDᾱD

)
+ ∂j

(
ρDᾱD < uD

j >D
)

= −5
4
ρDτ−1Γ ᾱD (21)

∂t

(
ρDā

)
+ ∂j

(
ρDā < uD

j >D
)

= −ρDτ−1Γ ā (22)

The convective transport in both equations is defined by the volume-fraction-
weighted averaged particle velocity < uD

i >D (e.g. Politis [7]). The first equation
(Eq. 21) originates from the well-known mass balance of the dispersed phase with
a mass transfer defining source term. The second equation (Eq. 22) governs the
surface fraction of the dispersed phase, being the synonym for the cloud surface
per volume. The evaporation time scale τΓ, the source terms of this evaporation-
describing two-equation model depend upon, reads:

τΓ = −ā
(

dā
dt

)−1
=

8
9π

D232
Γ

(23)

Accordingly, the transport of both quantities αD and a depends on the
evaporation constant Γ, which is given by the d2-law. Introducing the definition
of the evaporation constant, the final expression serving for the determination of
the evaporation time scale is given by:

τΓ =
D232
12

ρD

ρC
[DαβSh∗ln (1 +BM )]−1 . (24)

By solving the equations of the α-a-model the evaporation rate of a spray
stream can be quantified. In such a way, the mass balance of a two-phase flow
is completely satisfied.

Computational Methods in Multiphase Flow VI  133

 
 www.witpress.com, ISSN 1743-35  (on-line) 
WIT Transactions on Engineering Sciences, Vol 70, © 2011 WIT Press

33



3 Radiation, heat and mass transfer

In accordance to the transport of the absolute humidity Y the density of the
continuous phase consisting of the vapor and the carrier gas phase (p.e. air)
changes depending on that value:

ρC =
ρvapor

Y
=

ρair

1 − Y
. (25)

The radiative heat flux per volume q̇D
rad, absorbed by a particle, is defined in

terms of its surface area per volume a, the absorption coefficient of the dispersed
phase εDabs and the difference of the fourth powers of the absolute temperatures.

q̇D
rad = aεDabsσ

[
(TC)4 − (TD)4

]
, εDabs = εwater

abs = 0, 92 (26)

with the Stephan-Boltzmann constant σ = 5, 67051 · 10−8W/(m2K). This term
represents an additional source term in the equation of thermal transport. Due to
the equivalence of emission and absorption coefficients, the radiative flux can take
negative values, if the dispersed phase is on the higher temperature level compared
to the continuous one.

As defined in the evaporation model of Abramzon and Sirignano [4], the heat
transfer at the surface of an evaporating drop depends on the latent heat L(TD),
the temperature difference and the mass transfer ṁ

QL = ṁ

[
cDp
(
TC − TD

)
BT

− L
(
TD
)]
. (27)

The heat transfer coefficient BT is to be computed from the “Abramzon and
Sirignano”-model algorithm. By utilizing Eq. (21), this heat source term can be
expressed in terms of τΓ in a volume specific way.

Using the following definition of the evaporation enthalpy

∆hv =
R0

M vapor

(
1
TD

− 1
Tref

)−1
ln
psat (Tref)
psat (TD)

(28)

the heat, which is used for the evaporation process, can be subtracted from the heat
of the continuous phase. The temperature Tref denoting the gas temperature near
the drop surface is formulated by the 1/3-law (Hubbard et al. [8]):

Tref = TD +Ar

(
TC − TD

)
with Ar =

1
3
. (29)

The final two equations completing the Euler/Euler computational scheme are
those governing the thermal transport between the phases being represented by the
particular set of temperature equations. The liquid mass leaving the droplet in the
evaporation process influences strongly both the heat and mass transfer between
the phases. This process is accounted for by the Spalding heat and mass transfer
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coefficients BT (Eq. 27) and BM (Eq. 23). This algorithm for their determination
is pointed out by the evaporation model proposed by Abramzon and Sirignano [4].

The relative humidity 0 ≤ φ ≤ 1 is defined by the ratio of the vapor mass ratio
to its maximum: φ = Y/Ysat. The mass transfer per surface of a cloud of spherical
particles

ṁ

AO
= ρCDαβBM

Sh
E (Dp)

with AO = π E
(
D2p
)

⇒ ṁ = ρCπD21DαβShBM (30)

depends on the Sherwood Number Sh and the mass transfer coefficient BM :

BM =
Ysat − Y∞
1 − Ysat

=
Ysat

1 − Ysat
− Y∞

1 − Ysat
(31)

The heat flux

QL = NuπD21λ
C
(
TC − TD

)− ṁL
(
TD
)

(32)

depending on the Nusselt number Nu can also be defined in terms of the heat
transfer coefficientBT and the liquid temperature dependent latent heat L(TD):

BT =
cDp
(
TC − TD

)
QL/ṁ+ L (TD)

⇒ QL = ṁ

(
cDp
(
TC − TD

)
BT

− L
(
TD
))

. (33)

Utilizing the heat flux definition given by Eq. (32), the mass transfer rate
formulae can be finally written as a function of the Nusselt number

ṁ = πD21
λC

cDp
NuBT . (34)

In such a way, the mass transfer from the liquid to the gas phase can be
determined modelling the Nusselt number Nu and the Spalding Heat transfer
coefficient BT with the evaporation model of Abramzon and Sirignano [4].

4 Computational results and discussion

The flow configuration simulated of a turbulent, gas/liquid channel flow, being
discretized for the quarter channel, is considered. Similar as in the particle-laden
cases, a three-dimensional solution domain was adopted. The results obtained by
the Euler/Euler computational model were compared with the results obtained
by an Euler/Lagrange method (e.g. Sommerfeld et al. [9]) solving the transport
equations of the carrier phase (Euler framework) and individual tracking of the
droplet parcels (14.800 trajectories were introduced into the flow field displayed
in Figs. 2–4.

The boundary conditions of the flow configurations considered (channel
dimensions, bulk Reynolds number, turbulence intensities,. . . ) correspond to the
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geometry used for the experimental investigation of the particle-laden flow by
Kulick et al. [10]. Instead of solid particles, the flow was laden with droplets
characterized by their uniform distribution along the entire inlet cross-section. This
flow configuration (no experimental data for the evaporation process exist) with the
mass loading of the liquid phase being set to Z = 1% is simulated, corresponding
to a dilute liquid/gas two-phase flow. As already noted, the present evaporation
model was assessed by contrasting the Euler/Euler results to the results of the
Euler/Lagrange method exclusively.

Figs. 2–4 show some selected results obtained by both approaches. In order to
provide the fully-developed flow and turbulence conditions, a completely saturated
gas phase (relative humidity was taken to be 100%, outside the left boundary of
Fig. 2) was computed over the duct length of 260h = 5.2m (h-channel half-
width), prior to the onset of the evaporation process. The liquid phase evaporation
was introduced by heating the duct walls (in such a way the temperature derivative
corresponding to the difference between 353K prescribed at the inlet cross-section
- x = 0 - and the constant wall temperature of 368K was imposed, Fig. 2) causing
a decrease in the relative humidity, Fig. 2. The temperature range (T < 100oC)
was chosen to prevent complete evaporation. The work focused primarily on
the evaporation process due to concentration gradient. The temperature range
prescribed corresponds to the high saturation pressure derivative dpsat/dT (i.e.
dYsat/dT ).

A somewhat slower penetration of the heat flux into the flow core (Fig. 2,
lower), obtained by the Euler/Lagrange method in conjunction with original
evaporation model of Abramzon and Sirignano [4] implemented in the AVL
SWIFT commercial flow solver, causes weaker temperature gradients in this
region, leading to a less intensive evaporation process, a fact represented by a
slightly higher vapor concentration (weaker decrease from the initial 100%, Fig. 2
lower). Fig. 3a shows the isolines of the relative Reynolds number (important
for the determination of the drag force relaxation time scale τp in the volume
fraction weighted momentum equation for the continuous phase) based on the
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Figure 2: Comparison of the relative humidities obtained by the present
Euler/Euler scheme (upper) and the Euler/Lagrange method (lower).
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Figure 3: Isolines of a) Reynolds number Rerel, b) mass transfer coefficients BM

and c) time scale of evaporation τΓ across the duct at two selected
longitudinal locations x/h = 20 (left) and 140 (right) obtained by the
present Euler/Euler scheme.
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Figure 4: Droplet diameter (upper) and volume fraction αD (lower) isolines
obtained by the present Euler/Euler scheme.

velocity difference |
uC − 
uD| and droplet diameter Dp in the right top quarter of
the duct cross-section at two selected longitudinal locations. The results confirm
the general reduction of the Reynolds number due to the droplet evaporation
(diameter reduction and consequently the volume fraction αD reduction, Fig. 4).
This tendency is particularly pronounced in the near-wall flow regions. Fig. 3b
displays the evolution of the mass transfer coefficients BM in the Abramzon and
Sirignano evaporation model. This coefficient, representing indeed a measure of
the vapor fraction being absorbed by the surrounding gas phase, increases due
to warm up of the gas phase. The ratio of the droplet surface to the droplet
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Figure 5: Modified Nusselt-number at two selected locations: x/h = 20 and 90.

volume increases by the droplet diameter reduction. Due to the temperature raise,
resulting in the intensification of the evaporating process, the time scale of the
evaporation is decreasing, Fig. 3c. Fig. 5 illustrates the influence of the evaporation
(non-evaporating liquid phase was also computationally simulated) and droplet
diameter (two differentDp-values were analyzed: 50 and 100 µm) on the Nusselt-
number redistribution across the channel. Whereas no significant changes in the
Nusselt-number behavior in the case without evaporation (symbols) are noticed,
the modified Nusselt number exhibits a decrease in the region with the dominating
influence of the small droplets (near wall) if the evaporation is accounted for
(lines). In contrast, the increasing effect of the modification (in terms of the
Reynolds number, Fig. 3a) is pronounced in the flow core.
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