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Abstract

The transport of solid bodies (e.g. algae, debris or sediment grains) along a
coastline is a necessary consideration for the sustainable management of beaches
and coasts, including any structure built along the shoreline. The use of a stochastic
transport model allows to take into consideration a wide scale of physical
processes, such as the current around a coastal structure, the turbulence generated
by the flow and the effects of inertia and drag of each body. In order to validate
the developed model, in view of industrial applications, a set of experiments was
performed. The objective of the experiments was to validate to numerical model
in isotropic turbulence. The experiment consisted of oscillating grid generated
turbulence, inside which spherical particles were released. Measurements were
done using PIV to quantify the turbulence and video particle tracking to measure
displacement. The experimental result were then compared to various numerical
simulations.
Keywords: particle diffusion, stochastic transport, isotropic turbulence, oscillating
grid, particle image velocimetry, video particle tracking.
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1 Introduction

The transport of solid bodies (e.g. algae, debris or sediment grains) is a reoccurring
problem for many industrial structures built along the shore line interested in
the sustainable management of said coast. Currently most numerical models of
solid body behaviour along a shoreline focus on the growth and evolution of an
population (or ensemble) of bodies. These models require large time scales (days–
months) and are relevant for large-scale areas (10–100 km), for example see [1]
or [2] for algal blooms (a population of solid bodies). But these models prove
ineffective when designing civil engineering works necessary for the sustainable
management of coastal industrial structures. These problems require smaller scales
of investigation (10 m–1 km and 1–24 h) as the motion of a body will be affected by
tides, waves, and diffusion due to turbulence (see [3]). The model presented in [4]
develops a stochastic approach for predicting the trajectory of individual particles.
To validate this model, a set of experiments were done. In the first instance particles
were released in static water of different densities; this was done to test the settling
body velocities, as well as validate the particle tracking protocol. Finally particles
were released into semi-isotropic turbulence, created using a pair of oscillating
grids. Turbulent properties were quantified using PIV and LDV 2D measurements,
and particle displacement statistics were measured using video particle tracking.

2 The particle transport model

The numerical particle transport model used in this paper is a stochastic model.
It is divided into three stages. First the instantaneous local (at the emplacement
of the particle) fluid velocity components (Ui) are calculated, using a stochastic
model developed by [5]. It is then used to solve for the body velocity components
(Vi), using the momentum equation. These are then integrated to give the position
of the body (Xi), which is assumed to be isotropic (e.g. spheres):

dUi(t) = − 1
T
Uidt+ Cidt+BdWi(t) (1a)

dVi(t) = M̌dUi +
1

τpart
(Ui − Vi) dt+ ǧidt (1b)

dXi(t) = Vidt (1c)

Where dWi(t) represents a Wiener process; the other coefficients are defined by
the following equations:

T =
1

1
2 + 3

4C0

k

ε
(2a)

τpart =
2m

ρfSCD(Re) |Ui − Vi| (2b)

108  Computational Methods in Multiphase Flow VI

 
 www.witpress.com, ISSN 1743-35  (on-line) 
WIT Transactions on Engineering Sciences, Vol 70, © 2011 WIT Press

33



m = m+M (2c)

M̌ =
ρfΩ +M

m
=
ρfΩ +M

m+M
(2d)

ǧi =
m− ρfΩ

m
gi (2e)

Ci = − 1
ρf

∂P

∂xi
− 1
T
Ui (2f)

B =
√
C0ε (2g)

For which ρf is the fluid density, k is the turbulent kinetic energy, ε is its
dissipation rate, Ui are the mean fluid velocity components, P is the mean fluid
pressure,m is the mass of the body,M is the magnitude of the added mass tensor,
equal to 12ρΩ for a sphere, S is the cross-sectional area of the body, Ω is the area of
the body, gi are the components of gravity acceleration, CD drag coefficient (for
a sphere [6] provides an empirical solution as a function of the Reynolds number
Re = |Ui − Vi|D/ν), D is the sphere diameter, and finally C0 = 2.1.

As can be seen from the coefficients in equation 1a this model requires
characteristic flow variables (P , Ui, k and ε) to be input to solve for the
instantaneous local fluid velocity. These values are usually solved using another
numerical model. It should also be noted that the two characteristic time (T and
τpart) can vary greatly in time, space and from each other, making the resolution
of equations 1 difficult (see [4]). Finally this model will be compared to two other
numerical models: the model presented in [3], where the particles are transported
using Brownian motion and none of the solid body dynamics are considered, and
the model presented in [7] where the inertia of each particle is ignored. Focus
will later be placed the impact of modeling solid body dynamics, and in particular
inertia.

3 Settling velocities

This first experiment was undertaken as a mean of testing the particle tracking
protocol, and to serve as a reference for particles released in semi-isotropic
turbulence. To record the trajectories of the different settling particles, two cameras
were placed perpendicular to each other, with a tank filled with water at their
focus point. The tank was tall enough to ensure that particles reached their settling
velocities before entering the cameras’ field of vision. The effects of parallax were
taken into account and calibrations were done before hand, allowing to compute
the particle positions from pixels to millimeters.

Camera 1 :
x(mm)
x(pixels)

= αyy(mm) + βx
z1(mm)
z1(pixels)

= αyy(mm) + βx

(3a)
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Table 1: The diameters and densities of the Nylon Polyamide PA 6,6 particles
released into the fluid.

Diameter D Standard Mean body Standard

(mm) Deviation density ρs Deviation

(%) (kg/m3) (%)

20 0.254 1129 0.0740

10 0.508 1128 0.301

5 1.02 1115 0.125

2 2.54 1062 2.42

0.95 1 1.05 1.1

0

0.5

ρs

ρf

Vset√
gD

Figure 1: Dimensionless settling velocities against different particle fluid density
ratios. “ ” is the analytical solution (equation 4) plotted with its
95% confidence interval error bars and “ ” are the experimental
measurements.

Camera 2 :
y(mm)
y(pixels)

= αxx(mm) + βy
z2(mm)
z2(pixels)

= αxx(mm) + βy

(3b)

The bodies used are spheres with diameters D and densities ρs, presented in
table 1. They were released into two different fluid densities, ρf = 1000 and
1085 kg/m3. Using equation (1b) it is possible to calculate the settling velocities
of the bodies released in the fluid:

Vset =
dXz

dt
=

|m− ρfΩ|
(m− ρfΩ)

√
2 |m− ρfΩ|
ρfSCD(Re)

gz (4)
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Figure 2: Dimensions for the turbulence generating system. The origin of the axis
is located on the bottom right corner in the center of the lower grid.

Equation 4 is solved by iterations since Re depends on Vset. It should be noted
that for this problem a rising velocity is assumed to be negative. The experimental
values of Vset are then compared to the analytical results, for which the 95%
confidence interval (calculated using the values in table 1) is presented in figure 1.

On figure 1 it is visible that the uncertainties are greater for low density ratios
(ρs/ρf ), but these correspond to the 2 mm diameter particles, for which the density
had the greatest uncertainty (see table 1). In fact results show that for the smallest
density ratio particles are settling, but the solution to the numerical model using
the mean density gives a rising velocity. Nonetheless for large density ratios (with
small particle densities uncertainties) the numerical model predicts the settling
velocities accurately.

4 Turbulence quantification

The experimental device in figure 2 aimed to create near-isotropic turbulence by
oscillating a pair of rectangular grids in a tank of still water. Several operating
scenarios, in terms of oscillating of amplitudes (stroke S) and frequencies (f ) were
tested. The selected scenario, found to be most energetic, had a stroke of 10 cm and
frequency of 1.67 Hz. The fluid velocities were then measured using Particle Image
Velocimetry (PIV), in a 10 × 10 cm window of measurements located in between
the two grids. Using these results the turbulent kinetic energy (k) and its rate
of dissipation (ε) are estimated, see figure 3. Additional two-dimensional Laser
Doppler Velocimetry (2D-LDV) was performed to validate the PIV measurements,
and validate the horizontal isotropy.
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(b) Turbulent energy dissipation rate (ε)

Figure 3: Turbulent quantification for double grid generated turbulence with an
amplitude of 10 cm and frequency of 1.67 Hz.

Several papers give empirical formulae to model the turbulent characteristics of
the flow resulting from a single oscillating grid (see [8–11]). Using these formulae,
a crude hypothesis was stated; that the turbulent kinetic energy generated by
each grid can be added. The semi-isotropic nature of the turbulence allows this
assumption to give profile shapes for each turbulent characteristic in accordance
to what can be expected. Constants were then adjusted to correspond to the
constraints of the experiment. This gives the following equations:

U ′
x = U ′

y = γ1H
1
2S

3
2 f
[
z−2 + (Dist − z)−2

] 1
2

(5a)

U ′
z = γ2H

1
2S

3
2 f
[
z−2 + (Dist − z)−2

] 1
2

(5b)

k =
1
2
(
2γ21 + γ22

)
HS3f2

[
z−2 + (Dist − z)−2

]
(5c)

ε =
γ3U ′

x

3

Dist
(5d)

Where H is the grid mesh size (10 cm), S is the stroke (10 cm), f is the
frequency (1.67 Hz), Dist is the distance between the two grids (60 cm), U ′

i are
the root mean square values of the velocity and γi are constants equal to 0.199,
0.252 and 5.05 respectively. 2D-LDV measurements have allowed to conclude
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Figure 4: Vertical profiles for the turbulent kinetic energy and its dissipation.
S = 10 cm and f = 1.67 Hz. “ ” are the experimental values averaged
along the horizontal axis and “ ” is the empirical profile.

that U ′
x = U ′

y, but the constants γ1 and γ2 prove that the turbulence is not
fully isotropic, but since their ratio is approximately 80%, the turbulence is semi-
isotropic. In figure 4 the empirical and experimental profiles for the turbulent
energy and its dissipation are plotted. These empirical values are in accordance
with the measurements, and will therefore be used within the numerical model
(equations 1 and 2) to calculate particle displacement statistics.

5 Particle displacement statistics

The particles described in table 1 were then released into the turbulence generated
by the experimental setup presented in section 4, at location (50, 50, 85) cm, for
two different fluid densities, ρf = 1000 and 1084 kg/m3. Three representative
cases will be presented here: 20 mm particles in 1084 kg/m3 fluid, 10 mm particles
in 1000 kg/m3 fluid and 5 mm particles in 1000 kg/m3 fluid. Particle trajectories
were recorded in a similar fashion to section 3. Statistics were then computed
on the displacements over time of these particles (as the particle velocities were
not measured). These statistics were also computed using the model presented
in equations 1 and 2, for which the boundary conditions were provided by the
empirical model in equations 5. Furthermore these numerical and experimental
results where compared against two other numerical models; Brownian motion as
described by [3] and an inertia free model presented by [7].

Figure 5 plots probability density functions for the horizontal and vertical
displacements (Xhor and Xvert) of solid bodies in semi-isotropic turbulence. In
this figure plots are associated with three characteristic numbers: Nr which is the
number of experimental results, ρs/ρf which gives the density ratios and D/λl

which shows the ratio of the particle diameter. The coefficient dt, which appears
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Figure 5: Displacement statistics for bodies in grid turbulence of stroke 10 cm and
a frequency of 1.67 Hz. “ ” are the experimental values, “ ” are the
values for the numerical model (equations 1 and 2), “ ” are the values
for the numerical model if particle inertia was ignored [7] and “ ”
are the values for the numerical model for particles following Brownian
motion [3].

in this figure, represents the time step, whereas the large eddy characteristic length
(λl) is calculated using this equation : λl = C

3/4
µ k3/2/ε, with Cµ = 0.09. This

figure shows that the horizontal particle displacement statistics are driven by the
turbulent diffusion, whereas the vertical displacement statistics are driven by the
buoyant forces. Furthermore it should be noted that the numerical model present
in this figure have a few uncertainties associated with their resolutions, the main
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one being that particles are released above the window of measurement, and so
the turbulent properties at the point of release haven’t been validated. Nonetheless
numerical results seem to be in accordance to the experimental results.

The first conclusion that can be derived from figure 5 is that a Brownian
motion model (see [3]) is much too diffusive. [4] shows that the Brownian motion
model would have been in accordance if the turbulence integral scale was much
smaller. This implies that for turbulence of this magnitude, body properties (which
are not considered in Brownian motion) have an impact on particle diffusion.
The next conclusion is that for the largest particles (in figure 5(a)), the model
from equations 1 and 2, seems to underestimate the horizontal diffusion, and
overestimates the mean settling velocities. For smaller diameters (figures 5(b)
and (c)) the model seems to give good results. When considering body properties
([4] and [7] models), it should be noted that particle inertia is most important
in the cases where the particles are large and the density differences are small.
For example, even though the model in equation 1 has difficulties sticking to the
experimental results in figure 5(a), this model was developed under the assumption
that the body was much smaller than the large scales of turbulence, adding inertial
forces gives an improvement to just considering the drag forces (the model in
[7]). These differences are less visible for the vertical displacement, where the
displacement is driven by the buoyant forces. The assumption that the body was
much smaller than the large scale of turbulence was done to keep the bodies
passive; for the larger particles released in figure 5(a) it appears that its size cause
it to affect the turbulence around it, requiring a more developed model such as
Direct Numerical Simulations. When particles are smaller than the large scale
of turbulence, but still of the same order (figure 5(b)), considering inertia gives
an improvement, although considering the particle drag alone also gives a good
estimate (the model in [7]).

6 Conclusion and further work

These experiments on the trajectories of solid bodies in semi-isotropic turbulence
were undertaken to verify and observe the effect of solid body dynamics
within an turbulent flow field. These experiment made it possible to conclude
that the turbulent diffusion of these bodies is dependent on the forces
acting upon it (see equation 1b). Therefore the first conclusion derived from
these experiment is that a Brownian motion, which does not consider body
properties, such as described in [3], might be limited when used in models
developed to improve the sustainability of coastal structures. Furthermore
considering the body’s inertia gives an improvement to just considering drag
forces (as was the case in [7]), but when these differences are most visible
the particles’ sizes will affect the turbulence around them, and results are
only an approximation of the experimental results. Nonetheless for particle
displacement statistics of smaller bodies, the model presented in this paper
(equations 1 and 2) corresponds fairly well to the experimental results. It
has therefore been shown that the model presented in [4] here can be
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representative of the displacement of solid bodies in a turbulent flow, provided
there is at least an order of magnitude between the large turbulent eddies
characteristic size and the particle diameter. Future validating work will focus on
validating this solid body diffusion model for a more physical flow regime, in view
of being later applied to engineering problems. The next step will then be to repeat
this methodology for a deceptively simple problem of an open channel flow around
a groyne. Finally more complex geometries of real bodies, such as algae, will be
taken into consideration.
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