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Abstract

In this paper we present our results on numerical study of vapor bubbles growing in
quiescent superheated liquid, as effect of liquid evaporation at the interface. Height
Function interface reconstruction algorithm is coupled with an evaporation model
based on continuum field representation of source terms. The flow solver is a finite-
volume CFD code. Interface is tracked within a Volume-Of-Fluid framework.
Continuum-Surface-Force method accounts for surface tension effects. Vapor
bubble heat-transfer-controlled growth is simulated for three different working
fluids: water, HFE-7100 and R134a. Accuracy of interface reconstruction
algorithm is of maximum importance. Unbalance between pressure gradients
and surface tension forces at interface leads to the growth of an unphysical
velocity field which switches original only diffusive heat transfer mechanism
to combined diffusive-convective one. Height Function algorithm reduces the
magnitude of this unreal velocity field. Standard test cases are considered to assess
the performances of implemented version, through comparison with the widely
used Youngs algorithm.
Keywords: volume of fluid, height function, evaporation, surface tension, bubbles.

1 Introduction

Modern numerical implementation of surface tension driven flows, with phase
change, begins with the work of Juric and Tryggvason [1]. Earlier methods used
a Lagrangian approach with a moving mesh following the interface. The limit
of these methods was that they could not manage large interface deformation.
Juric and Tryggvason developed a Front Tracking algorithm where Lagrangian
evolution of interface is tracked on a fixed grid. Welch and Wilson [2] and Son
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and Dhir [3] reformulated two full Eulerian methods, called Volume-Of-Fluid
(VOF) and Level-Set (LS), in order to take into account for phase change. Both
methods solve a scalar field conservation equation, volume fraction for VOF
and level-set function for LS. This scalar field is used to reconstruct interface
shape and position. Level-set function varies smoothly through interface, giving an
accurate interface shape approximation, but mass conservation is not preserved. On
the contrary, Volume-Of-Fluid method preserves mass conservation, but volume
fraction field varies sharply through interface, leading to poor quality interface
representation. Several algorithms have been developed in order to give better
interface representation on Volume-Of-Fluid background. An important issue in
the simulation of boiling flows is the thermal boundary condition at the interface.
Most of the methods impose interface temperature at equilibrium saturation
temperature corresponding to system pressure, but different conditions may be
taken at interface. A detailed review can be found in [1].

The aim of the present work is to model a two-phase flow with phase change
by means of a finite-volume CFD code. VOF method is used to follow interface.
Two different methods to reconstruct interface are compared: Youngs method [4]
and Height Function (HF) method [5–7]. The comparison is carried out analyzing
algorithms performances through standard test cases. An evaporation model based
on continuum-field representation of source terms developed by Hardt and Wondra
[8] is implemented. Finally, HF and evaporation models are employed to simulate
the growth of a vapor bubble in quiescent superheated liquid.

2 Governing equations and numerical model

In the VOF method, a volume fraction α is defined for every domain cell. It
represents the fraction of volume cell occupied by liquid, and it can be thought
as the integral of an indicator function I(x, t) over the cell of volume V :

α =
1
V

∫
V

I(x, t)dV (1)

The indicator function I(x, t) is a multidimensional Heavyside step function
with value 1 in liquid phase and 0 in vapor phase. Interface cells can be located by
those cells with volume fraction included between 0 and 1. Generic fluid property
Φ for every domain cell can be expressed in term of α as follows:

Φ = Φv + (Φl − Φv)α (2)

where Φv and Φl are vapor and liquid specific property. Since in this work
both phases are always considered incompressible, the substitution of Eq. (2) in
continuity equation yields the following volume fraction conservation equation:

∂α

∂t
+ ∇ · (αu) =

Sα

ρl
(3)

where Sα represents mass source term due to evaporation or condensation.
Through Eq. (3) interface position is advected at every time step. Momentum
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conservation equation for a surface tension driven laminar flow, with constant
surface tension σ, has the following form:

∂(ρu)
∂t

+ ∇ · (ρu · u) = −∇p+ ∇ ·
[
µ

(
∇u + ∇uT

)]
+ ρg + Fσ (4)

where Fσ represents surface tension force. It is modelled through Continuum-
Surface-Force (CSF) method developed by Brackbill et al. [9]. By CSF method
surface tension force Fσ can be expressed as:

Fσ = σκ∇α (5)

where κ stands for interface curvature. Therefore surface tension, a surface force,
is modeled as a volume force, localized on a finite thickness interface. Interface
curvature κ has to be computed by the interface reconstruction algorithm, in
this case Youngs or HF method. The flow equations set is completed by energy
conservation equation:

∂(ρcpT )
∂t

+ ∇ · (ρcpuT ) = ∇ · (λ∇T ) + SE (6)

where SE represents energy source term due to evaporation or condensation. Vis-
cous heating is neglected. The task of the evaporation model is to compute correct
mass and energy source terms, giving fields localized on interface cells.

Governing equations are discretized within a finite-volume framework. Volume
fraction conservation equation is discretized first order in time through explicit
scheme. PLIC technique by Youngs [4] is employed to compute mass transport
across interface cell sides. Implicit first order scheme is used to solve momentum
and energy conservation equations. Convective terms are discretized using a third
order MUSCL scheme [10]. Diffusive terms are always discretized with central
finite-difference scheme. For pressure-velocity coupling, PISO algorithm [11] is
used.

3 Evaporation model

The Hardt and Wondra evaporation model [8] is implemented in order to evaluate
mass and energy source terms on mass and energy equations. The model allows
local interfacial temperature to deviate from saturation condition and local mass
source is evaluated proportional to this interface superheating. According to Juric
and Tryggvason [1], different interface temperature conditions may be taken, in
order to account for entropy production due to phase change and for pressure
rising due to curved interfaces. For the sake of simplicity, without loss of accuracy,
entropy generation and non-equilibrium thermodynamics terms are neglected.
Within these assumptions, a mass source equation was derived by Schrage study
[12] of interface mass transfer. In order to express local interfacial mass flux
ṁ, Schrage introduced the concept of local interfacial convective coefficient hi,
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expressed as:

hi =
2β

2 − β

h2lv√
2πR

ρv

T
3/2
sat

(7)

in which R is the gas constant, hlv is vaporization latent heat and β is a constant
called accommodation coefficient, for which details can be found in [12]. Local
interfacial convective coefficient hi is connected to local interfacial mass flux as
follows:

ṁ =
hi

hlv
(Ti − Tsat) (8)

where Ti is the interfacial temperature. An initial mass source field is evaluated
on interfacial cells, where evaporation takes place, by Eq. (8). Such a localized
source term may lead to numerical instabilities. To avoid instabilities, a diffusion
equation in which initial field represents initial condition is solved. The effect is to
smear the initial field over some cells. Diffused mass source field is then used to
evaluate mass and energy source terms. Hardt and Wondra [8] demonstrated that
this evaporation model leads to correct evaporation rate, by comparing their results
with some benchmarks.

4 Evaluation of surface tension effects:
HF and Youngs comparison

The task of the reconstruction algorithm is to reconstruct interface geometry,
meaning normal vector n and curvature, which is implicit in volume fraction field.
VOF based algorithms compute local curvature through derivatives of a chosen
color function c, by the following relation:

κ = −∇ · n = −∇ · ∇c
|∇c| (9)

where the first equation derives from geometrical considerations, see [9] for
reference. Youngs [4] is one of the widest reconstruction algorithm used on VOF
background, for this reason it was chosen as comparison. It works also with
unstructured grids. It employs volume fraction α as color function to compute
curvature, but volume fraction has a very sharp variation through interface, leading
to poor accuracy computation. Height Function method derives a smoother color
function field through local integration of volume fraction field, then derivatives
are more accurate. It only works with Cartesian grids. The algorithm implemented
is a merge of Malik et al. [6] and Hernandez et al. [5] schemes. It follows a brief
summary of the algorithm:

1. For each interface cell, volume fraction field on a local stencil is considered.
Stencil orientation, vertical or horizontal, depends on interface orientation,
determined by normal vector direction, computed as n = ∇α/|∇α|;

2. Stencil extension, from 3 × 3 up to 7 × 3 cells, is chosen depending on
volume fraction field variation, width is always 3 cells;
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3. Stencil volume fraction field is adjusted to obtain a monotonic variation
along height direction, in order to avoid errors when more than one interface
cuts the stencil;

4. Volume fractions are summed columnwise, obtaining a local discrete height
functionH field;

5. If central column H value is not included on the cell for which curvature
is being computed, curvature is taken equal to adjacent cell for which
this condition is satisfied. Otherwise, curvature is computed through the
extended form of Eq. (9):

κ = − H(2)

[1 + (H(1))2]3/2
(10)

where H(1) and H(2) denote first and second order derivatives of height
function, computed through central difference scheme.

For axisymmetric simulations, curvature κ in Eq. (5) refers to total curvature,
obtained summing principal curvatures radii κ1 and κ2. On a cylindrical
coordinate reference frame (r, φ, z), κ1 denotes interface curvature on r−z plane,
computed as reported from 1 to 5 steps. Curvature κ2 refers to second principal
curvature of the surface obtained through revolution of interface around z axis.
It lies on a plane normal to interface and perpendicular to r − z plane. Denoting
interface profile in r − z plane as f(z), second curvature can be expressed as:

κ2 = −
(
f ′(z)
|f ′(z)|

)
1

f(z)[1 + (f ′(z))2]1/2
(11)

The discrete version of first order derivative of interface profile f ′(z) follows
from HF algorithm, while discrete interface position f(z) can be computed for
each interface cell, given cell volume fraction and normal vector.

4.1 Test case 1: inviscid static droplet

A circular droplet of radius R is centered on a L = 4R side square domain.
Different uniform mesh sizes ∆x are tested, in order to check convergence rate
of the methods. The coarsest mesh has 20 × 20 elements, with R/∆x = 5.
The most refined mesh has 160 × 160 elements, with R/∆x = 40. Surface
tension and phases’ densities are set as unity. Viscous and gravity effects are
neglected. Pressure is given at all boundaries as boundary condition. For such a
flow, momentum equation reduces to the form:

D(ρu)
Dt

= −∇p+ σκ∇c (12)

If pressure gradient is balanced by surface tension force, left hand side term is
zero at each time step. Any unbalance leads to the growth of an unphysical velocity
field defined “spurious velocity” or “parasitic current”. Due to the absence of
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external forces, the accuracy of the surface tension model and curvature calculation
algorithms is attested by the comparison of unphysical velocity fields magnitude,
in terms of the following non-dimensional error norms:

L2(|u∗|) =
1
U

√√√√ n∑
i=1

|ui|2
n

(13)

L∞(|u∗|) =
1
U

· max(|ui|) for i = 1, . . . , n (14)

where n is the number of domain cells and U is a velocity scale defined as
U = (σ/2ρR)1/2. Velocity error norms convergence history is reported in
Fig. 1. Youngs method results do not converge with mesh refinement. HF results
show second order convergence for R/∆x ≤ 10, then for higher resolutions
convergence order is in the range [1, 2]. Simulation time step is hold constant at
∆t = 5 · 10−7, while capillary time step constraint decreases as mesh is refined.
For R/∆x > 10 it gets too close to simulation time step, yielding a worsening
of convergence rate. The following non-dimensional pressure jump error norm is
defined:

L2(∆p∗) =
1

∆pex

√√√√ m∑
i=1

(∆pi − ∆pex)2

m
(15)

wherem is the number of interior droplet cells and ∆pex = σ/R is the exact value
of pressure jump across the interface. Pressure convergence history is reported in
Fig. 1. Youngs results show convergence (first order) only for R/∆x ≤ 10. HF
error norm shows convergence rate in the range [1, 2] for all mesh sizes.

4.2 Test case 2: isothermal bubble rising in viscous liquid

The second test case is the simulation of a gas bubble rising in a viscous liquid
due to buoyancy forces. The effect of the combination of inertial, viscous and
surface forces on bubble numerical terminal shape and velocity are compared with
Bhaga and Weber experimental results [13]. Bhaga and Weber performed several
test cases with air bubbles rising in a quiet water-sugar solution. Acting on sugar
concentration, they could vary liquid density and viscosity to span a wide range
of Eötvös (E) and Morton (M) numbers, obtaining different bubble shapes and
terminal velocities, expressed as bubble Reynolds (Re) number. Surface tension
variations were negligible. Non-dimensional numbers are defined as follows:

E =
ρlgD

2

σ
, M =

gµ4

ρlσ3
, Re =

ρlUD

µl

where D is bubble initial diameter and U is terminal bubble velocity, when the
rise reaches a steady state. Numerical and experimental results are compared for
4 different cases characterized by the same Eötvös number. Variation of Morton
number was possible in the simulations by changing only liquid viscosity. It was
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Figure 1: L2(|u∗|) (a,b), L∞(|u∗|) (c,d) and L2(∆p∗) (e,f) error norms after one
and fifty time steps. White squares represents HF and black diamonds
are Youngs error norms. Dashed lines are first order and solid lines are
second order curves.
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proved that setting density ρl/ρg and viscosity µl/µg ratios as in the experiments
leads to numerical errors. Since similitudes with experiments are guaranteed by
Eötvös and Morton numbers, which involve only liquid properties, gas properties
are set in order to fix aforementioned ratios to ρl/ρg = 1000 and µl/µg = 100.
Bhaga and Weber tested that wakes behind the bubbles are closed and symmetric
until Re< 110. Since the simulations are performed on a 2D axisymmetrical
domain, the cases chosen satisfy this condition.

A bubble of diameter D is centered at (0, 2D) of a [0, 4D] × [0, 12D]
axisymmetric rectangular domain, with x = 0 being the revolution axis. Domain
sizes are set in order to avoid boundary influence, following Hua et al. sensitivity
analysis [14]. Hua et al. show also that mesh resolution D/∆x ≥ 20 ensures grid
independence, then a 80 × 240 grid is chosen. Constant pressure is set on top and
bottom boundaries. Free-slip condition is imposed on the domain side.

All the simulations are run until a steady state condition for the rising bubble is
achieved, for both Height Function and Youngs algorithms. Then, bubble terminal
velocity is computed and Reynolds number is evaluated for each case. Bubbles
terminal shape for HF and Youngs cases are reported in Tab. 1, together with
experimental and numerical Reynolds numbers. For cases I, II and III, both
methods show similar performances, with errors in Reynolds number included
below 5%. HF method performs slightly better than Youngs. Bubble shapes are
very similar for both methods, close to experiments. Case IV is characterized by
the highest bubble terminal velocity, then by the highest difference in gas-liquid
phases velocity. Interface profile is highly deformed, the most in the bubble back,
where interface changes its orientation in really a sharp way. Then, interface is
poorly solved by the grid and HF algorithm computes wrong local geometry,
leading to errors in capillary effects calculation. Wrong forces computation leads
to the detachment of little parts of gas at bubble trail in the simulations. Then, the
smaller bubble main body moves with a lower velocity with respect to experiments.

5 Vapor bubble growing in superheated liquid

Height Function interface reconstruction algorithm and evaporation model are
implemented in order to simulate the growth of a spherical vapor bubble in an
infinitely extended superheated liquid. In accord to Plesset and Zwick analysis
[15], bubble growth process can be temporally split in two stages. A first stage,
called inertia-controlled growth, which starts at bubble formation. At this stage,
growth is governed by momentum interaction between bubble and surrounding
liquid. Later, an asymptotic stage is reached, called heat-transfer-controlled
growth. In this stage, characterized by a growth rate lower than first stage, growth
is limited by heat transport to the interface. This asymptotic stage is the object of
this study. Scriven [16] has derived an analytical solution for this stage, neglecting
viscous and surface tension effects and considering the interface at saturation
temperature. He obtained analytical bubble radius R as a function of time t:

R(t) = 2β
√
γt (16)
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Table 1: Comparison of experimental and numerical Reynolds number. Figures
represents bubble terminal shapes computed at α = 0.5 contours. Solid
line is HF shape, dashed line is Youngs shape. Errors between parenthesis
are computed as err = |Re − Renum|/Re.

Test Experiments Simulations

case [13] Shapes ReHF ReY

I

E = 116

M = 848

Re = 2.47

2.37
(4%)

2.37
(4%)

II

E = 116

M = 41.1

Re = 7.16

7
(2.2%)

6.94
(3.1%)

III

E = 116

M = 1.31

Re = 20.4

19.66
(3.7%)

19.55
(4.2%)

IV

E = 116

M = 0.103

Re = 42.2

37.8
(10.4%)

39
(7.6%)

where β is a growth constant which details can be found in [16] and γ is liquid
thermal diffusivity. This solution is used to validate numerical results.

The growth of a bubble of initial radius R0 = 0.1 mm is simulated. The
bubble is centered at (4R0, 0) of a [0, 8R0] × [0, 4R0] axisymmetric rectangular
domain, with y = 0 being the revolution axis. A uniform mesh size is chosen,
with 1µm element size. Such a fine grid is necessary in order to solve the thin
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thermal boundary layer surrounding bubble interface. As boundary conditions,
pressure is fixed at all boundaries except for the axis. The fluid flow is laminar
and gravity effects are neglected. All vapor and liquid properties are considered
constant at saturation temperature. Initial bubble size is large enough to neglect
vapor saturation temperature rising due to pressure jump across interface, then
saturation temperature is equal for both phases. Initial pressure and velocity fields
are zero. Initial temperature is saturation temperature for the bubble, while liquid
is superheated at a temperature T∞ = Tsat + 5 oC.

A thin thermal boundary layer is placed around the interface on liquid side.
Since the simulation starts at a t = t0, when R(t0) = R0, a thermal boundary
layer has been developing around the bubble since the beginning of heat-transfer-
controlled growth stage. Temperature field around the bubble at t = t0 can be
extrapolated from Scriven solution as a function of spatial coordinate r and time.
The thickness of initial thermal layer δT is defined as:

δT = r(T = Tsat + 0.99(T∞ − Tsat)) −R0 (17)

Great attention has to be paid to initial thermal boundary layer position. Analytical
initialization suggests thermal layer to begin at r = R0. Nevertheless, in those
cells which interface is less aligned with grid (close to π/4 and 3/4 π), cells
centroids are located at r > R0. Then, in those cells, thermal layer intersects
bubble interface, leading to a faster initial growth rate than analytical. To avoid
this effect, thermal boundary layer is initialized with a bit of misplacement, about
1-2 cells, outside bubble interface.

Three different fluids are tested. Water at atmospheric pressure, HFE-7100 at
0.52 bar, both with β = 15.1 and δT = 7 µm and R134a at 0.84 bar, with β = 9.34
and δT = 11 µm. The choice of each system pressure is done in order to have
similar growth constants for the fluids.

During the whole simulation, bubble shape remains spherical. At initial stage
of this work, this was proved not to happen using Youngs method for evaluating
interface curvature. Moreover, growth was too fast due to high convective heat
transfer led by unreal velocities related to errors in curvature calculation. Figure 2
shows bubble radius evolution obtained through HF method compared to analytical
solutions, for all the fluids. Numerical data show good agreement with analytical
results. For each fluid, bubble numerical growth rate follows a

√
t proportional

law, as it should be from Eq. (16). However, this does not happen during initial
growth phase, in a more evident way for HFE-7100 and R134a. This initial phase
can be meant as a settlement phase, in which thermal boundary layer arranges to fit
interface position. This settlement is reflected on numerical growth rates lower than
analytical ones at the beginning of the simulations. As detected by Kunkelmann
and Stephan [17], liquid thermal conductivity is the parameter that rules the length
of this thermal layer settlement phase. The higher is liquid thermal conductivity,
the faster is thermal layer arrangement. For this reason numerical bubble growth
rate deviation from analytical curve is more evident for refrigerant fluids and the
most for HFE-7100, which has the lowest thermal conductivity.
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Figure 2: Vapor bubble radius over time for analytical and numerical solutions.

6 Conclusions

The main objective of this work was to implement the Hardt and Wondra
[8] evaporation model in a finite-volume framework, in order to simulate a
vapor bubble growing in superheated liquid for some working fluids. Bubble
shape is computed in implicit way through VOF scheme and an interface
reconstruction algorithm has the task to compute interface curvature. Accurate
curvature computation is fundamental in order to correctly account for surface
tension effects, leading to physical consistent interface shapes. This objective
is reached implementing Height Function algorithm, which evaluate curvatures
through derivatives of a color function obtained integrating volume fraction field.
Inviscid static drop test case assesses HF performances compared to the widely
used Youngs algorithm. Inaccuracies in terms of errors in velocity fields and
pressure jump over interface scale with second order to mesh element size.
Isothermal bubble rising test cases show good agreement of HF numerical results
with experiments for Re ≤ 20, with errors in numerical Reynolds number
lower than 5%. HF algorithm coupled with evaporation model leads to excellent
agreement of vapor bubble numerical growth rate compared to analytical solutions.
The success of the simulations is related to correct treatment of initial thermal
boundary layer. Fine grid resolution and proper boundary layer placement are
necessary to obtain exact bubble growth rate.
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