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Abstract 

Bubbles flow in a microchannel is an interfacial and surface tension dominated 
problem. The paper reports results of numerical modelling and simulation of 
interfacial behaviour of bubbles flow and coalescence in a square microchannel. 
The lattice Boltzmann method (LBM) is developed and applied to the simulation 
in which a simple linear function is applied to the order parameter to 
approximate the density within the interface of gas-liquid. The evolution of two 
isothermal air bubbles flowing through a water-filled microchannel at low 
Reynolds number and the interactions between the flow fields and the interface 
of gas-liquid are simulated and investigated numerically.   
Keywords: bubbles, coalescence, microchannel, LBM, interfacial behaviour. 

1 Introduction 

To understand bubbles interfacial behaviour in two-phase flow has long been an 
important topic of research in physical science and engineering; it becomes 
particular important for studying the flow in a confined system such as 
microchannel. Over the past few years, the study of gas-liquid two-phase flow in 
microchannels has drawn much attention from scientists and engineers due to 
increasing demands for developing micro-fluidic devices, micro-heat-
exchangers, micro-reactors, micro-actuators, etc.   
     On experimental study, in the last decades, many results on adiabatic gas-
liquid two-phase flow patterns in micro/mini-channels were reported [1–3], but 
they poorly agree with the previous transition models and correlations for macro-
channels. Chen et al. [4] tested nitrogen-water two-phase flow in circular 
mini/micro channels to report flow patterns including bubbly, slug, bubble-train 
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slug, churn and annular flows. Other experimental studies of gas-water flow in 
microchannels can also be identified [5–9].  
     On numerical study, in recent years, along with extensive applications of 
CFD to the study of two-phase flow [10–13], the lattice Boltzmann method 
(LBM) has become an established numerical scheme for simulating multiphase 
fluid flows. The key idea behind the LBM is to recover correct macroscopic 
motion of fluids by incorporating the complicated physics of problems into 
simplified microscopic models or mesoscopic kinetic equations. In LBM, kinetic 
equations of particle velocity distribution functions are first solved; macroscopic 
quantities are then obtained by evaluating hydrodynamic moments of the 
distribution function. This intrinsic feature enables the LBM to model phase 
segregation and interfacial dynamics of multiphase flow. Therefore, the LBM 
has a potential and broad applicability as well as many computational advantages 
such as parallel of algorithm and simplicity of programming [14–15]. Since the 
last 20 years, different LBM models for simulating multiphase flow have been 
developed.  Gunstensen et al. [16] proposed a multi-component model based on 
the two-component lattice gas method. Shan and Chen [17] presented a two-
phase/component flow model of mean-field interactions.  Later, Swift et al. [18, 
19] proposed a free energy model; and He et al. [20] developed the model using 
index function to track the interface of multi-phase flow with large density ratios. 
In 2004, Inamuro et al. [21] developed a LBM model based on the projection 
method to predict the behaviours of incompressible bubbles/particles in bulk 
liquid. The method calculates two distribution functions of particle velocity to 
track the interface and to predict velocities; the corrected velocity field satisfying 
the continuity equation is obtained by solving the Poisson equation.  Recently, a 
further work of the LBM for incompressible two-phase flow on a partial wetting 
surface with large density ratio was presented by the author [22]. 
     In the present paper, two isothermal air bubbles motion and coalescence in a 
water-filled rectangular microchannel are studied to test the suitability of the 
LBM for simulating the interfacial behaviour of the bubbles flow in a micro 
channel.  

2 Methodology 

2.1 The lattice Boltzmann method 

A new scheme of the lattice Boltzmann method for simulating two-phase fluid of 
large density ratio is proposed and described below.  In a 3-dimensional 15-
velocity (D3Q15) LBM model, as shown in Fig. 1, the particle velocity, 

)14 ..., ,1 ,0( =ααe , is given by 
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Figure 1: Discrete velocity set of 3-D 15-velocity (D3Q15) model. 

     To simulate two-phase fluid flow, two distribution functions of fluid particle 
velocity, αf  and αg , are introduced. Function αf  is used to calculate the order 
parameter φ , which distinguishes the two phases.  Function αg  is used to 
calculate the predicted velocity, *u , of the two-phase fluids. The evolution of 
the particle distribution functions ),( tf xα  and ),( tg xα  with particle velocity αe  
at point x  and time t  is calculated by the following equations: 

),(),( )( tftf eq
tt xex ααα δδ =++ ;                                                 (2) 

),(),( )( tgtg eq
tt xex ααα δδ =++ ;                                                 (3) 

where, 1=tδ  is the time step in which the particles travel the lattice spacing; 
)(eqfα  and )(eqgα  are the corresponding equilibrium states of αf  and αg , given by 
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      In the above equations, k  is a constant parameter for determining the width 
of interface and the strength of surface tension; I  is a unit tensor of second-
order.  Given that )(φψ  is the bulk free-energy density, then  
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     The macroscopic quantities, *u , φ , ρ , µ  can be evaluated as 
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where Lφ  and Gφ  are respectively the maximum and minimum order parameter 
for marking bulk liquid and gas; Lρ  and Gρ  are respectively the density of 
liquid and gas phases; Lµ  and Gµ  are respectively the dynamic viscosity of 
liquid and gas phases. In Eq. (10), a simple linear function is applied to 
approximate the density within the interface; this enables the present method to 
obtain ),()( tf eq xα  and ),()( tg eq xα  in a simple form and thereby improve 
computation efficiency. For example, the calculations of second-order tensor 

)(ρG , first partial derivative of ρ , etc., can be avoided in the present model, 
but they have to be calculated in the models such as [21]. 
     To enable the method to treat two-phase fluids interacting with confined solid 
surfaces with wetting boundary potentials, for the current isothermal system, a 
simple form of representation of the free energy density )(φψ , as suggested in 
[23], rather than the van der Waals free energy used in the traditional model, is 
applied in the present simulation, namely, 

bbLG p−+−−= φµφφφφβφψ 22 )()()( ;                                    (11) 
where β  is a constant relating to interfacial thickness; bµ  and bp  are the bulk 
chemical potential and bulk pressure, respectively. 
     By substitution of Eq. (11), Eq. (7) becomes 
 

      bGLGLGL pp +−−−−−= )3)()(( 2
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     In a plane interface under an equilibrium condition, the density profile across 
the interface is on equilibrium and can be represented as [22] 
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where ξ  is the coordinate normal to the interface; the interface thickness D  is 
given by 
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     The fluid-fluid (liquid-gas) surface tension force σ  is expressed as [24]  

        βφφσ kGL 2
6

)( 3−
= .                                            (15) 

2.2 Correction for pressure 

It should be pointed out that the predicted velocity *u  is not divergence free. To 
obtain the velocity field which satisfies the continuity equation ( 0=⋅∇ u ), *u  
is corrected by following equations: 

         
ρ
p∇

−=− *uu ,                                                (16) 
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where p  is the pressure of the two-phase fluid.  Eq. (17) can be approximated by 
the LBM framework equation: 

     *1
3
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where, n  is the number of iterations and ρτ /15.0 +=  is the relaxation time. The 
pressure at step 1+n  is given by 

       ∑ +=+
α

α )1,()1,( nhnp xx .                                              (19) 

     The convergent pressure p  is determined when  
ε<+−+∈∀ |)1,()1,(|  , npnpV xxx ;                                  (20) 

where V  denotes the whole computational domain. Substituting the newly 
obtained pressure p  into and solving Eq. (16) gives the corrected u , the 
velocity field.  

2.3 Boundary treatment 

Applying the present LBM model, no-slip boundary conditions can be 
implemented by simply specifying the zero velocity on the solid boundaries, i.e. 
the boundary velocities u  and *u in Eqs. (4-5) and (16-18) are given by  

 0=wu , 0* =wu .                                                 (21) 
     As there is always a thin liquid layer in the vicinity of the solid boundary 
surface due to the intermolecular forces between the liquid and solid substrate 
[25, 26], it is assumed that a thin liquid occupies one layer of the lattice spacing, 
the order parameter on the boundary used in Eqs. (4-5) is then determined by 

Lw φφ = .                                                              (22) 
     In the present simulation, the finite-difference of the order parameter on the 
boundary are given by  
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where, ζ  is the direction perpendicular to the wall.  In this scheme, the first term 
on the right hand side of Eq. (23) is determined by a right-handed finite-
difference; the second term is calculated by a standard centred finite-difference 
formula.  Finally, it is found empirically that the best choice for the third term is 
a left-handed finite-difference formula taken back into the wall, namely, 
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3 Results and discussion 

The motion of air bubbles surrounded by water flow in a three dimensional 
rectangular microchannel is considered. The gravitational force is taken into 
account by adding the term gGz )/1(3 ρρω αα −− e  to the right hand side of Eq. 
(3), where g  is the dimensionless gravitational acceleration.  
     Fig. 3 shows the computational domain and initial and boundary conditions of 
the modelling.  Initially, two air bubbles with same diameter md µ200=  are 

placed mµ300  apart in water inside the channel of the length mLx µ1200~
= , the 

width and the height mLL zy µ300~~
== . The channel has an inlet boundary on 

the left hand side of the channel and a free outflow boundary on the right hand 
side of the channel. The other four sides of the channel are no-slip solid walls. 
Naturally, the densities of two fluids are set at 3/1000~ mkgL =ρ and 

3/0.1~ mkgG =ρ  (making the density ratio to be 1000); meanwhile the dynamic 
viscosities of them are mskgL /101~ 3−×=µ , mskgG /101.2~ 5−×=µ , 
respectively. The initial surface tension between water and air is of 

23 /101~ skg−×=σ  and the gravitational acceleration is at 2/8.9~ smg = . To 
relate the physical parameters with simulation parameters, a length scale of 

mL 5
0 101 −×= , time scale of sT 7

0 101 −×=  and mass scale of kgM 14
0 101 −×=  

are applied; these lead to the dimensionless parameters: 100=Lρ ; 1.0=Gρ ; 

1.0=Lµ ; 3101.2 −×=Gµ ; 4.0=Lφ ; 1.0=Gφ ; 05.0=k ; and 9108.9 −×=g , 
respectively. Unless otherwise specified, the following simulations are within a 
computational domain occupied by 3030120 ×× cubic lattices; ε  in Eq. (20) is 
set at 6101 −×=ε . 
     The velocity distribution at the inlet boundary is specified as,  
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Figure 2: Computational domain and initial/boundary conditions. 

where, U  is the maximum value of ),,0( zyux .  Thus, the Reynolds number is 
defined as 

L

zLUL
µ

ρ
=Re .                                                     (26) 

     The bubbles flow and behaviour in the microchannel at Re=100 is first 
simulated. The evolution with time of bubbles shapes and the behaviour of 
interactions are shown in Fig. 4. It can be seen clearly that the bubbles move in 
x-direction by the thrust force of surrounding water flow and meanwhile go up in 
y-direction due to the effect of buoyancy force; and with time marching, the two 
bubbles coalesce into a lager one. To focus only on the shape evolution of the 
left bubble at the early stage, it is found that the lower part of the bubble moves 
more quickly in x-direction than the upper part, which is caused mainly by the 
effects of velocity boundary layer near the solid wall of the channel. 
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2ms
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Figure 3: Evolution with time of bubble shapes and behaviour at Re=100. 

     The velocity fields are obtained through the numerical modelling.  For 
example, at st 3102~ −×= , the velocity distribution at different cross sections of 
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y-z plane in Fig. 4 such as 2/xLx = , 3/2 xL  and 4/3 xL , respectively, is shown 
in Fig. 5; where the solid line, the constant density line, indicates the interface 
between the two phases. As both pressure and velocity distributions across the 
interface are normally excellent indicators of numerical stability for the LBM 
calculations [27], Figs. 5 and 6 have actually shown that the present LBM can be 
used to obtain reasonable and stable velocity fields. Indeed, similar to the 
conventional CFD, the numerical instabilities of the LBM for two-phase flow of 
large density ratios are mainly caused by spurious velocities and/or the large 
oscillation of the pressure distribution across the phase interface. However, in the 
present method, the velocity and pressure are both corrected by solving an 
additional Poisson equation after each collision-stream step. Such corrections are 
able to ensure the velocity to satisfy the continuity equation and smooth pressure 
distributions even across the interface, so that to ensure the numerical stability.  
 

 

Figure 4: Velocity field at different cross section, mst 2~ = , Re=100: 
(A: 2/xLx = , B: 3/2 xLx = , C: 4/3 xLx = ). 

     Figs. 6(a) and (b) show the velocity vector and the vorticity contours, 
respectively, at st 3102~ −×= , and at 2/yLy =  on x-z plane.  It can be seen that 
the local distribution in coherent structures is evident; the shape of the coalescent 
bubbles is a result of the interaction between the fields of velocity and density 
concentration, and this is mainly affected by the effects of buoyancy force of the 
bubbles [28].  
     Fig. 7 shows the evolution of the bubble shapes at a low Reynolds number 
(Re=50).  The results show an interesting evolution of the bubbles flow and  
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Figure 5: Velocity vector and vorticity contours of coalescent bubble at 
2/yLy =  on x-z plane for mst 2~ = , Re = 100. 

 

0.5ms 1ms 1.5ms 

2ms 2.3ms 2.4ms 

2.5ms 2.6ms 2.7ms 

Figure 6: Time evolution of bubble shapes at Re=50. 

coalescence. At the early stage of the flow, the evolution of the bubbles is quite 
similar to that at Re=100, two bubbles coalesce at 2~5.1 .0 ms; however, at the 
later stage, the newly coalescent bubble re-breaks up into two bubbles; this 
shows probably a typical phenomenon of the flow at low Reynolds number.  
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Obviously, such separation is caused by the strong effect of shear boundary layer 
near the upstream boundary.  As at low Reynolds number, the buoyancy effect is 
more evident; which forces the bubbles migrating to the upper boundary of the 
channel and meanwhile results in the displacements in x-direction smaller and 
forms a relative returning flow in the vicinity of the bubbles interface as the 
sheer stress tending to different directions. 

4 Conclusions 

In this paper, a newly modified LBM model is developed to simulate bubbles 
flow in a rectangular microchannel. In the current model, a simple linear function 
of order parameter is applied to approximate the density within the interface of 
two fluids; meanwhile, a new form of the free energy density (rather than the van 
der Waals free energy) is used to enable the model treat confined surface and 
wetting boundary conditions. Based on the developed LBM model, the evolution 
of two isothermal air bubbles move through a water-filled microchannel are 
investigated numerically. Both the bubble shapes and the velocity files are 
imported to analyze the bubble-water and bubble-bubble interactions. The effect 
of Reynolds number on the flow is also examined. It is found that two bubbles 
can finally coalesce into one larger bubble at the relatively high Reynolds 
number; however, under the lower Reynolds number (e.g. Re=50), the newly 
coalesced bubble can be separated again by the stronger shear flow upstream. 
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