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Abstract

Packed bed reactors are widely used in industry to improve the total contact area
between two substances in a multiphase process. In some cases, like for the pack-
ing elements of some CO2 absorption towers, the packing material can be of such
geometric nature that during discharge through them different flow conditions can
be present in different parts of the packing. This renders prediction of pressure
drops quite difficult. This paper concerns experimental and modelling activities
to improve predictive equations for pressure drops over a packed bed of Raschig
rings. It is shown that the application of some corrective measures can dramatically
improve the correlation between theory and experiment, but that more research is
needed in this field, regarding both carefully controlled experiments and mathe-
matical modelling.
Keywords: pressure drop, porous media, packing materials, Raschig rings, drag
models.

1 Introduction

In the chemical engineering industry packed bed reactors are widely used to improve
the total contact area between two substances in a multiphase process. The process
typically involves forced convection of liquid or gas through either structured or
dumped solid packings. Applications of such multiphase processes include mass
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(a) (b)

Figure 1: Typical examples of random packings. (a) Metallic Raschig rings and
(b) glass Raschig rings.

transfer to catalyst particles forming the packed bed and the adsorption of gases or
liquids on the solid packing.

For reactor design the drag laws are needed to predict the pressure drops over
such reactors. In many cases the packing material can be of such geometric nature
that during discharge through them different flow conditions can be present in dif-
ferent parts of the packing. This renders prediction of pressure drops quite difficult.
This paper concerns experimental and modelling activities to improve predictive
equations for pressure drops over a packed bed of Raschig rings.

An experimental study on the determination of air flow pressure drops over dif-
ferent packing materials was carried out at the Telemark University College in
Porsgrunn, Norway. The packed bed consisted of a cylindrical column of diameter
0.072m and height 1.5m, filled with different packing materials. Air was pumped
vertically upwards through a porous distributor to allow for a uniform inlet pres-
sure. Resulting pressure values were measured at regular height intervals within
the bed. Due to the geometric nature of a Raschig ring packing the wall effects,
namely the combined effects of extra wall shear stress due to the column sur-
face and channelling due to packing alignment adjacent to a solid column surface,
were assumed to be negligible. Several mathematical drag models exist for packed
beds of granular particles and an important question arises as to whether they can
be generalized in a scientific manner to enhance the accuracy of predicting the
drag for different kinds of packing materials. Problems with the frequently used
Ergun equation, which is based on a tubular model for flow between granules and
then being empirically adjusted, will be discussed. Some theoretical models that
improve on the Ergun equation and their correlation with experimental work will
be discussed. It is shown that a particular pore-scale model, that allows for differ-
ent geometries and porosities, is superior to the Ergun equation in its predictions.
Also important in the advanced models is the fact that it could take into account
anomalies such as dead zones where no fluid transport is present and surfaces that
do neither contribute to shear stress nor to interstitial form drag. The overall con-
clusion is that proper modelling of the dynamical situation present in the packing
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Figure 2: Experimental results for glass Raschig rings.

can provide drag models that can be used with confidence in a variety of packed
bed applications.

There is a wide range of different packing materials available. The packing
material used varies from application to application. Factors that need to be con-
sidered include the pressure drop produced by the packed bed, chemical stability
of the packing and size of the packing, to name but a few. Porous media created
by using the packing materials illustrated in Figure 1 are called random dumped
packings, as they are randomly placed into the container. Raschig rings and small
glass spheres were provided by the TUC in Porsgrunn Norway and were used to
produce the experimental results presented in this study.

An example of data retrieved during the experiments conducted at the TUC is
given in Figure 2. As indicated in Figure 2, there is a data point that does not follow
the trend of the rest of the data. This is assumed to be caused by experimental error
and is ignored for the remainder of the analysis.

2 Existing models used to predict flow behavior through porous
packed beds

In this section some existing available models are discussed. For convenience of
comparison all models will be rewritten in terms of a F , defined by

∆p
L

= µqF, (1)
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with ∆p the measured pressure drop, corrected for gravity, and L the bed height.
The Reynolds number,Rep, is defined as:

ReDp ≡ ρqDp

µ
, (2)

for use in the present study.

2.1 Ergun equation

The Ergun equation [1], empirically based on results obtained from experimental
packed beds of identical spheres, is given in the present notation, with Dp the
particle diameter, as:

FD2
p =

150(1 − ε)2

ε3
+

1.75(1 − ε)
ε3

· ReDp . (3)

The empirically based constants compensate for the assumptions made in the cap-
illary model. One assumption is that the porous medium is statistically uniform so
that there is no channelling. Of course this is a crude assumption as channelling
is common place in practical applications. Another more practical assumption is
that the column diameter is large in comparison to the particle dimensions. The
Ergun equation [1] also assumes a uniform particle size. As more data on irregular
particles becomes available, the modelling can be improved to represent a wider
spectrum of packed bed geometries.

2.2 RUC model

An RUC drag model, [2], is used in this work to give a possible prediction of
single phase flow through the packing elements of a CO2 absorption tower. This
universal model can be applied to different types of porous media and for this work
our interest is in the granular and foam versions.

2.2.1 Granular RUC model
The granular RUC model is model aims to approximate porous media such as
sand, consisting of small granular particles. The expression for the drag factor for
granular porous media is expressed as:

FD2
p =

25.4(1 − ε)4/3

(1 − (1 − ε)1/3)
(
1 − (1 − ε)2/3

)2 +
cd(1 − ε)

2ε
(
1 − (1 − ε)2/3

)2ReDp . (4)

The form drag coefficient, cd, should typically be determined either numerically
or empirically and is frequently assigned the value 1.9. The pressure drop can then
be determined via the drag factor F from equation (4).
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2.2.2 Foam model
The RUC foam model was developed to accurately predict flow behavior through
foamlike porous media [3]. A typical example is a spongelike metallic foams. The
two variations that exist in the foam model are the doubly staggered model and
the singly staggered model, the latter yielding a smaller pressure drop for the same
discharge. The drag factor is given as:

Fd2 =
24ψ2 (ψ − 1)

ε2
+

cd ψ
2(ψ − 1)

2 ε2(3 − ψ)
· ρqd
µ
, (5)

in the case of the doubly staggered model and as:

Fd2 =
36ψ2 (ψ − 1)

ε2
+

cd ψ
2(ψ − 1)

ε3(3 − ψ)
· ρqd
µ
, (6)

for the singly staggered model. An expression for the geometric factor, ψ, as given
in equations (5) and (6), is given as:

ψ = 2 + 2cos
[
4 π
3

+
1
3
cos−1(2ε− 1)

]
, (7)

for foamlike media. The micro-scale parameter d is given by the length of a cube
that would produce N cubes in the total packing volume. The total number of
particles in a fixed bed is represented by N .

2.3 The Sonntag correction

A small change in the porosity has a large impact on the pressure drop and thus
this effect can have a large influence on the pressure drop, predicted by the models.
Sonntag [4] introduced the influence of the fraction m of the inner volume Vi

of a Raschig ring that is stagnant and does not contribute to the shear stress nor
to the interstitial form drag. After experimental correlations he stated that only
approximately 20% of the inner volume of the ring is available for flow, i.e. m =
0.2. The effect of the decrease in the volume available for flow is a decrease in the
effective porosity.

2.4 Nemec’s equation

Nemec [4] applied the Sonntag correction to the Ergun equation. In Nemec’s work
the experimentally determined values for the tortuosity, χ, and the friction fac-
tor, f , are kept the same as stated by Ergun. The reasoning is that when Sonntag
derived his 20% criterion he used the original Ergun equation. Thus if adapted val-
ues for the tortuosity, χ, and the friction factor, f , are used, say for a bed consisting
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of equivalent solid cylinders, the value of Sonntag’s correction would change. The
equation put forward by Nemec can be written as:

Fd2
e =

150(1 − ε)2

ε3

[
ε3

(1 − (1 − ε) (Vfc −mVi) /Vp)
3

]
×

[
de (Sfc +mSi)

6Vp

]

+
1.75deρq(1 − ε)

µε3

[
ε3

(1 − (1 − ε) (Vfc −mVi) /Vp)
3

]

×
[
de (Sfc +mSi)

6Vp

]2

, (8)

with Vi the volume of the inner void cylinder, Vp the particle volume and Vfc the
volume of a hypothetical full cylinder with the same outer dimensions. In equation
(8) the surfaces are indicated by an S and the subscripts have the same meaning as
previously mentioned volumes. The fraction of the inner void of each ring available
for flow is denoted by m and can be taken as 20% according to Sonntag [4]. The
equivalent particle diameter is defined as 6Vp/Sp and is denoted by de in equation
(8).

2.5 Mackowiac’s equation

Using experimental results from Raschig ring packings, Mackowiak [5] arrived at
the following drag equation for perforated Raschig ring packings when he investi-
gated the influence of the fluid-solid interface on the drag:

F =
1
µq

(
725.6
Rev

+ 3.203
)

(1 − ϕ)
(

1 − ε

ε3

) (
F 2

v

dpK

)
. (9)

Here the form factor ϕ becomes zero for non-perforated packings, like Raschig
rings.

According to Mackowiak the value for the resistance coefficient, ψ0, has been
determined experimentally and has been found to be given by:

ψ0 =
(

725.6
Rev

+ 3.203
)
, (10)

with Rev the modified Reynolds number and is defined as:

Rev =
qdp

(1 − ε)µ
K. (11)

3 Comparative results

The comparisons of the models to the experimental data for glass Raschig rings
are given in Figure 3. The models were compared to the data and to each other,
for metallic Raschig rings in Figure 4 (a). The metallic rings produced a higher
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Data
Nemec eqn. (5.1.37)
Doubly staggered foam eqn. (2.2.12)
Singly staggered foam eqn. (2.2.13)
Granular model eqn. (2.2.9)
Ergun eqn. (2.3.4)
Mackowiak eqn. (5.1.48)

Figure 3: Comparison of model with the data for glass Raschig rings (refer to
Figure 1(a)).

porosity than the glass ring bed. The result is that the effect of the wall on the over
all pressure drop is lower with the metallic rings. This is also slightly evident from
Figures 3 and 4 (a). It is suspected that wall effects are the cause of the difference
in curvature of the models and the actual data. Confirmation of this suspicion is
that when pressure drop measurements through small spherical particles were col-
lected, there were no curvature discrepancy. In Figure 4 (b) the comparison of the
Granular RUC model to the data acquired with flow through non-uniform spherical
particle is given. Thus the difference in curvature could not be caused by incorrect
data processing or incorrect experimental methods.

4 Adaptations

4.1 Shape-factor

In the case of irregular shaped packings, shape factors can be used to determine the
equivalent diameter of a sphere with the same volume as the element or particle
(nominal diameter). The sphericity, φs, of an element is the ratio of the surface
of the equivalent sphere to the actual surface area of the element. In Figure 5 the
effect of a shape factor (sphericity) is investigated. It is evident that the sphericity
marks a significant improvement on the RUC granular model and Ergun equation’s
accuracy.
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Figure 4: (a) Comparison of model with the data for metallic Raschig rings Figure
1 (b). (b) Comparison of the RUC granular model [2] with experimental
data given a range of particle sizes. 100 − 200µm powder was used to
acquire the data.
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Figure 5: Investigation of the effect of the sphericity on the Ergun equation and the
RUC granular model.
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Figure 6: (a) Comparison of models with the Sonntag correction equal to 20%
(with glass Raschig rings). (b) Pressure gradients of the different models
and the data.
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4.2 The Sonntag correction

This stagnant region within the rings can also be the reason for the under prediction
of the Ergun equation. In Figure 6 the effect of the Sonntag correction is given.
Thus using the sphericity and the Sonntag correction the best correlation to the
experimental data is obtained.

5 Conclusion

The major contribution of this work was the generation of a set of data by means
of experiments and analyses of possible predictive models. They produced satis-
factory correlations to data and thus provide confidence in the capability of math-
ematical models to predict experimental trends for various fixed bed reactors.

The initial aim of using the spherical particle powders in the experimental part
of this study was to check how experimental results would compare with the well
known Ergun equation. As the Ergun equation was adapted empirically, based on
the data obtained for flow through uniform spheres, it is expected to describe the
flow through non-uniform spheres to some extent. The reason for such an assess-
ment was because of the non-linearity of the data acquired with Raschig rings. The
curvature differed from what the models predicted and the suspicion arose that the
data may have been processed incorrectly. Thus, after the powders produced data
that had the same behavior as the models, especially the Ergun equation, it can be
concluded that the problem with the Raschig rings was not the result of incorrect
data processing. The main cause is expected to be wall effects, due to the column
to ring size ratio being small, only about 10. If this ratio is much larger, i.e. if
dc/dp >> 10, the effect of the wall can be ignored [5].

With the incorporation of the Sonntag correction all the models perform better.
On the modelling side the Sonntag correction was applied with great success to
existing empirical and pore-scale models. Using any of the models discussed in this
work without Sonntag’s correction will result in a under-prediction of the pressure
drop for Raschig ring experiments.

The deviations in the models from the data could be attributed to a variety of
different effects. Almost none of these effects could be pin-pointed satisfactorily
in this work due to time constraints. It is thus advisable to verify which effects
predominated in both the Raschig ring and powder beds. The next logical step
would then also be to find ways in which to combat the effects or to adapt the
models to take these effects into account.
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