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Abstract

An existing pore-scale model is used to predict the effective diffusivity of
staggered two-dimensional rectangular unconsolidated arrays through the use of
a Representative Unit Cell concept. A tri-diagonal matrix algorithm is used to
solve the diffusive flux field and to compute the effective diffusion coefficient for
concentration gradients of staggered arrays. The numerical results and analytical
model are compared critically with theoretical and numerical studies, as well as
experimental data reported in literature. The good correlations obtained for the
effective diffusivity provide confidence in both the computational and analytical
work.
Keywords: diffusion, porous media, pore-scale, effective diffusion coefficient,
modelling, microstructure, fibres.

1 Introduction

The study of molecular diffusion forms an important cornerstone in the analysis of
more involved multiphase processes, such as dispersion and combustion in porous
media, which form part of many processes in the coal industry, e.g. the recovery of
methane from coal beds (Kim et al. [1]) and similar industries. Natural substances,
such as coal, vary considerably in structural morphology. The microstructure is
seldom simple and most often present a mixture of different types of porous envi-
ronments. The flow processes thus often consist of a mixture of convective flow in
macropores and molecular diffusion in micropores. Following up on considerable
success with a pore-scale model on the modelling and subsequent prediction
of drag during convection in porous media, our next goal is the modelling of
diffusion making use of the same geometrical and modelling practices. To this end,
descriptions of diffusion in two-dimensional rectangular arrays of non-staggered

 © 2009 WIT PressWIT Transactions on Engineering Sciences, Vol 63,
 www.witpress.com, ISSN 1743-3533 (on-line) 
doi:10.2495/MPF090341

Computational Methods in Multiphase Flow V  399



and of fully staggered solid rectangles are needed to formalize the theory and to
compare it with published experimental, computational and theoretical models.

2 Diffusion equation

Fick’s second law of diffusion or simply the diffusion equation is given by

∂ρA

∂t
+ ∇·D∇ρA = 0, (1)

whereD is the mass diffusivity or diffusion coefficient for component A diffusing
through component B and ρA is the mass concentration of species A. The diffusiv-
ity D is a property of a specific system, dependent upon the system’s temperature,
pressure and composition (Welty et al. [2]). Eqn. (1) applies to a stationary,
incompressible fluid without chemical production. For a steady incompressible
fluid, constant diffusion coefficient, no chemical production and no fluid motion
the Laplace equation for mass transport is obtained (Welty et al. [2]), i.e.

∇2ρA = 0. (2)

3 Effective diffusion coefficients of porous media

Equation (2) is a point equation which governs the transport of mass of the
chemical species considered. When regarding diffusion in porous media, eqn
(2) needs to be solved at every point within the porous medium which leads to
enhanced mathematical complexity. The characterization of diffusion in porous
media therefore relies on the use of macroscopic dependent variables (Sáez et al.
[3]). Eqn (2) thus needs to be volume averaged over a representative portion of
the porous domain according to the volume averaging theory (e.g. Whitaker [4]).
Boundary conditions also need to be imposed together with conditions at the fluid-
solid interfaces (Sáez et al. [3]). For the present work no mass transfer between
the phases will be considered. Volume averaging of eqn (1) leads to the following
macroscopic diffusion equation:

∂〈ρA〉f
∂t

= Deff : ∇∇〈ρA〉f , (3)

where Deff is the effective diffusion coefficient which is only a function of the
geometric structure of the porous medium at the pore level (Sáez et al. [3]) and
may thus be expressed as a function of the porosity alone, i.e.

Deff

D
= f (ε). (4)

In the next section a geometric pore-scale model will be introduced which will
be used to predict the effective diffusivity analytically.
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Figure 1: RUC model for fibre beds.

4 Geometric pore-scale model for fibre beds

The geometric pore-scale model for fibre beds was originally introduced by Du
Plessis [5]. It is based on a rectangular Representative Unit Cell, abbreviated RUC,
which is defined as the smallest rectangular control volume, Uo, into which the
average geometrical properties of the porous medium may be embedded. The RUC
model for fibre beds is shown in Fig. 1.

Only cross-flow – flow perpendicular to the prism axis – will be considered, as
indicated by the streamwise direction n̂ in Fig. 1. Cross-flow through prismatic
porous media can therefore be approximated as two-dimensional flow. Two arrays
are considered, namely a fully staggered array in which maximum staggering
occurs in the streamwise direction and a non-staggered array in which no stag-
gering occurs in the streamwise direction. The fluid filled volume within the RUC
is denoted by Uf and Us denotes the volume of the solid phase. The RUC model
is assumed to be homogeneous and isotropic with respect to the average geometric
properties of the fibre bed. The porosity ε of the RUC model is defined as

ε = Uf

Uo
. (5)

4.1 Volume partitioning

The total fluid filled volume Uf within the RUC may be expressed as

Uf = U‖ + U⊥ + Ug + Ut, (6)

where the streamwise volume U‖ is the total fluid volume parallel to the stream-
wise direction, the transverse volumeU⊥ is the total fluid volume perpendicular to
the streamwise direction, in the stagnant volume, Ug, the fluid remains stationary
and in the transverse fluid volume, Ut , no wall friction occurs due to the absence
of adjacent solid surfaces. From eqn (5) and quantification of the respective fluid
volumes, the following relationship between the linear dimensions of the RUC

 © 2009 WIT PressWIT Transactions on Engineering Sciences, Vol 63,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Computational Methods in Multiphase Flow V  401



model for fibre beds is obtained in terms of the porosity (Du Plessis [5]):

ds = d
√

1 − ε. (7)

Diedericks and Du Plessis [6] defined the geometrical tortuosity as the ratio of
the streamwise displacement d to the total path length de of the fluid traversing
through the constant cross-sectional area Ap‖ in the RUC. The tortuosity may also
be expressed as a volumetric ratio, but with stagnant volumes excluded, yielding
[7]

χ = de

d
= U‖ + Ut + ξU⊥

Ap‖d
= U‖ + Ut + ξU⊥

U‖ + Ut
, (8)

where the coefficient ξ was introduced to account for the reduction in the tortuosity
due to the splitting of the streamtube into two equal but directionally opposite
transverse parts in a fully staggered array. It thus follows that ξ = 1/2 for the
fully staggered array and ξ = 0 for the non-staggered array. Quantification of the
tortuosity leads to the following expression for the fully staggered array

χ = 1 + 1

2

√
1 − e, (9)

and for the non-staggered array χ = 1. In order to account for the effect of stagnant
regions a geometric factor ψ was introduced and defined as (Lloyd et al. [7])

ψ ≡ Uf

U‖ + Ut
= Uf

Ap‖d
= U‖ + Ut + U⊥ + Ug

U‖ + Ut
. (10)

The geometric factor expressed as a function of the porosity alone yields

ψ = ε

1 + √
1 − e

. (11)

4.2 Effective diffusivity predicted by the RUC model

According to Kim et al. [1] it is common for isotropic processes to express the
effective diffusivityDeff over the diffusivityD as

Deff

D
= ε

χ
. (12)

Making use of eqn (9) for the tortuosity obtained by the RUC model, yields

Deff

D
= ε

1 + 1
2

√
1 − e

, (13)

for the fully staggered array. An alternative expression for the effective diffusion
coefficient can be obtained by using the geometric factor supplied by the RUC
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model, which takes into account stagnant regions, instead of the tortuosity, i.e.

Deff

D
= 1 + √

1 − e. (14)

Equation (14) applies to both the staggered and non-staggered arrays.
Weissberg [8] made use of a variational approach which they applied to a bed

of spheres to obtain the following expression for the effective diffusivity:

Deff

D
= ε

(
1 − 1

2
ln ε

)−1

. (15)

Maxwell (Kim et al. [1]) analyzed a dilute suspension of spheres analytically
and obtained the following expression for the effective diffusivity:

Deff

D
= ε

[
1 + 1

2
(1 − ε)

]−1

. (16)

The micropore-macropore model of Wakao and Smith [9] is given by

Deff

D
= ε2. (17)

Based on their experimental data Kim et al. [1] proposed the following empirical
equation for the effective diffusivity:

Deff

D
= ε1.4. (18)

5 Series-parallel formulae

A popular concept to model diffusion in arbitrary composites is to mix two
formulae that applies to composites made up of laminates of different diffusivities,
namely the series and the parallel formula (Crank [10]). The assumptions for these
models are that each laminate has uniform diffusive properties and the diffusive
transport is uni-directional. It will be assumed that the solids are impenetrable, i.e.
Ds = 0 (Crank [10]).

5.1 Series-parallel (SP) model

In the SP model (Crank [10]) the composite is split into thin cross-stream strips,
after which an effective diffusion coefficient is calculated for each strip using the
parallel formula and, finally, by summing the strips in series an effective diffusion
coefficient is obtained for the composite as a whole. Thus, in the SP-model the
parallel formula is first applied, followed by the series formula.
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Diffusion

Figure 2: Overlapping fully streamwisely staggered array.

5.2 Parallel-series (PS) model

In the PS model (Crank [10]) the composite is split into thin strips parallel to the
streamwise direction, after which an effective diffusion coefficient is calculated for
each strip using the series formula and, finally, by summing the strips in parallel
an effective diffusion coefficient is obtained for the composite as a whole. Thus, in
the PS-model the series formula is first applied, followed by the parallel formula.

6 Effective diffusion coefficients of ordered arrays

For the present work only the overlapping fully streamwisely staggered array will
be discussed. A regular array, a non-overlapping fully staggered array and an
overlapping fully transversally staggered array have also been studied but will not
be included in this work.

In a regular array no staggering and no overlap of the solids occur in any
of the two principle directions. In the non-overlapping fully staggered array the
solid rectangles are staggered in both principle directions but with no overlap of
the solids. In the overlapping fully streamwisely staggered array staggering and
overlapping of the solids occur only in the streamwise direction. A schematic
representation of an overlapping fully streamwisely staggered array is shown in
Fig. 2. The unit cell is indicated by the dashed lines and also shown in Fig. 3.

Both the SP and the PS models were applied to the unit cell. The results of the
overlapping and non-overlapping streamwisely staggered arrays are presented in
Table 1.
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Figure 3: Unit cell of streamwise fully staggered array with overlaps.

Table 1: Diffusion coefficients based on the SP- and PS-models.

Non-overlapping fully

staggered array: SP model:
DSP

D
=

[
1 + ds‖ds⊥

d‖(2d⊥ − ds⊥)

]−1

PS model:
DPS

D
= d⊥ − ds⊥

d⊥

Overlapping fully streamwisely

staggered array: SP model:
DSP

D
=

[
1 + ds‖ds⊥

d‖(2d⊥ − ds⊥)

]−1

PS model:
DPS

D
= 0

7 Weighted average of the SP and PS models

The following weighted average is suggested by Bell and Crank [11] to predict the
effective diffusivity:

Deff = θDSP + (1 − θ)DPS, (19)

where DSP and DPS are the estimates produced by the SP and PS models and

θ = 0.56 − 0.5

(
1

2
ds‖

)
+ 0.4

(
1

2
(d⊥ − ds⊥)

)
. (20)
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Figure 4: Effective diffusion coefficient as a function of the transverse pore width
h for σ = 0.2.

For the present analysis let the streamwise solid dimension be denoted by σ =
1
2ds‖ and the transverse pore width be denoted by h = 1

2 (d⊥ − ds⊥).

8 Numerical computations

A tri-diagonal matrix algorithm was used to solve the diffusive flux field and to
compute the concentration gradients from the discritized form of eqn (2). The
concentration values were used to calculate the effective diffusion coefficient. The
ratio of Deff /D was calculated as the ratio of the sum of the fluxes of all the cells
within the porous matrix over the ratio of the total flux when no solids are present.

8.1 Fully staggered array of rectangles

Fig. 4 shows the effective diffusion coefficient as a function of the transverse pore
width h for σ = 0.2. In RUC notation it follows that for this specific case d‖ = d⊥
and 1

2ds‖ = 0.2, whilst 1
2 (d⊥ − ds⊥) is allowed to vary. For 0 ≤ h ≤ 0.5 the SP

and PS models for the overlapping fully streamwisely staggered array were used
and for 0.5 ≤ h ≤ 1 the SP and PS models for the non-overlapping fully staggered
array were used. The predictions by both the SP and PS models are shown in Fig.
4 together with the weighted average of the two models. The agreement between
the weighted average model and the numerical data is satisfactory. Fig. 4 is similar
to Fig. 9(a) of Bell and Crank [11].
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Figure 5: Effective diffusion coefficient as a function of porosity for a fully
staggered array of squares.

8.2 Fully staggered array of squares

The effective diffusion coefficient for the fully staggered isotropic array was
computed by setting 2 d‖ = d⊥, because if a square cell with solid squares is used,
then the effective diffusion coefficient cannot be computed for porosities less than
0.5 because the solid squares will begin to overlap. In the way Bell and Crank [11]
formulated their cells it is most probable that they encountered this restriction for
further analysis. The effective diffusion coefficients predicted by the SP and PS
models for square arrays can be obtained from table 1 as a function of the porosity
by setting d‖ = d⊥ = d and ds‖ = ds⊥ = ds .

Fig. 5 compares the numerical data to the predictions for the effective diffusivity
obtained by the RUC model and with experimental and numerical data as well as
several analytical models from literature.

The model of Wakao and Smith [9] underpredicts the diffusivities obtained from
the experimental data whilst both RUC models are in good agreement with the
experimental data as well as all the other analytical models. The experimental
data of Currie [12] and Hoogschagen [13] were obtained from beds of spheres.
The RUC model involving the tortuosity proves to be more accurate at porosities
greater than 0.8 than the RUC model based on the geometric factor. Nevertheless,
both RUC models as well as the numerical results obtained within this work are in
good agreement with the experimental and numerical data from literature as well
as with the other analytical models from literature. Kim et al. [1] states that simple
two-dimensional models can be used to predict the transport properties of isotropic
systems which is confirmed by the present work.
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9 Conclusions

A pore-scale model of simple rectangular geometry is used to predict the effective
diffusion coefficient for isotropic systems. The present results show that the
effective diffusivity can be accurately predicted in terms of only the porosity and
the particle geometry. Numerical computations were performed to compute the
effective diffusion coefficient for staggered arrays of solid rectangles. Both the
analytical RUC model and the numerical computations are in good agreement
with data and predictive models from literature. The successful interim results
pave the way for a more advanced study towards analysis of coupled convective-
diffusive processes in double porosity media which is important in the study of
coal processing.
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