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Abstract 

The effect of geometry on the interaction of two equal-sized drops in shear flow 
is presented. The full Navier-Stokes equations are solved by a finite 
difference/front tracking method. The interaction of drops was studied at finite 
Reynolds numbers for viscosity ratio (λ) of one. The distance between drop 
centres along the velocity gradient direction (z) was measured as a function of 
time. The interaction of two drops contains approach, collision, and separation. 
Based on experimental data, we simulated different geometries by changing the 
offset and size of drops. It was found that ∆z increases after collision and reaches 

∆z, during three stages 
of interaction, increases with the increasing initial offset. To investigate the drop 
shape evolution, we calculated the deformation and the orientation angle formed 
by the drop major axis and horizontal direction. The deformation of the drops is 
maximum when the drops are pressed against each other and minimum when 
they are drawn a part. Our results show that the time of approaching of drops at 
low initial offset is greater than the other ones, but the maximum deformation is 
the same for equal drop sizes. The deformation decreases with the decreasing 
size of drops. As the initial offset increases, the drops rotate more quickly and 
the available contact time for film drainage decreases. We found that the 
trajectories of drops in the approaching stage are different owing to the different 
initial offsets. However, after the drops come into contact, it can be seen that 
they follow the same trajectories, similar to experimental results.           
Keywords: two-phase flow, front tracking, Reynolds number, Weber number, 
capillary number, offset, drainage time.  
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1 Introduction  

Immiscible polymer blending plays a fundamental role in determining material 
properties of industrial interest. It is important to understand and control the size 
and size distribution of the dispersed drops because the properties of the blend 
depend on them. The final size distribution is determined by a balance between 
flow-induced break up and coalescence. While break-up involves a single drop 
and is not very affected by the presence of neighbouring drops in a blend 
(Leowenberg and Hinch [1], coalescence is the result of many-particle 
interaction process. 
     The majority of numerical simulations are based on the interaction of two 
deformable drops in a shear flow, the drainage of the thin film between two 
colliding drops and the problems of coalescence of two deformable drops. Wang 
et al. [2] computed the coalescence of two undeformed spherical drops. 
Leowenberg and Hinch [3] presented the numerical simulations of the interaction 
between deformable drops based on boundary integral calculations. They 
showed that if capillary number is much smaller than one, the tendency for 
coalescence is greatest when drops are pressed against each other by the shear 
flow. Viscosity ratio effects on film drainage between interacting drops were 
studied by Bazhlekov et al. [4]. Cristini et al. [5] simulated the drop break-up 
and coalescence by an adaptive mesh algorithm. Effects of inertia on the 
rheology of a dilute emulsion of drops in shear flow are investigated by Zhao [6] 
using direct numerical simulation. The drop shape and flow are computed by 
solving the Navier-Stokes equations in two phases using front tracking method.          
     On the other hand, most of experimental works are based on blending studies 
that analyses the drop size distribution of a blend or a concentrated emulsion. 
The collision of two equal-sized drops immersed in an immiscible liquid phase 
undergoing a shear flow in a parallel apparatus was investigated by Guido and 
Simeone [7] over a range of capillary numbers. Trajectories of a pair drops and 
their deformations were presented. The coalescence efficiency of two drops in a 
simple shear flow was also investigated by Mousa et al. [8]. The effect of 
viscosity ratio on the flow-induced coalescence of two equal-sized drops with 
clean interfaces was investigated by Yoon et al. [9]. Their studies showed that 
when the viscosity ratio is greater than O(0.1), the critical capillary number 
decreases with increasing offset only for the smallest offset. Zhao [10] 
investigated the drop break up in dilute Newtonian emulsions in simple shear 
flow by using high-speed microscopy over a wide range of viscosity ratio, 
focusing on high capillary number. He showed the final drop size distribution 
intimately links to the drop break up mechanism, which depends on viscosity 
ratio and capillary number.         
     In this article, we present numerical simulation data describing the motion of 
a pair of drops under simple shear flow at finite Reynolds numbers. We consider 
the special case of drops with the same viscosity as the continues-phase fluid. 
Formulation and numerical method are described in §2, results are presented in 
§3, and concluding remarks are given in §4.  
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2 Formulation and numerical method 

2.1 Formulation  

The governing equations for the motion of unsteady, viscous, incompressible, 
immiscible two-fluid systems are the Navier-Stokes equations in conservative 
form: 
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Here u is the fluid velocity, p is the pressure, ρ is the fluid density, µ is the fluid 
viscosity, σ is the surface tension coefficient, g is the acceleration due to gravity. 

βδ is a two- or three-dimensional delta function (for β=2 and β=3) respectively.   
κ is the curvature for two-dimensional flows and twice the mean curvature for 
three-dimensional flows. n is a unit vector normal to the drop surface pointing 
outside of the drop. x is the position in Eulerian coordinate and X is the position 
of front in Lagrangian coordinate. 
     Both of immiscible fluids are taken to be incompressible, so the divergence of 
velocity field is zero: 

.0. =∇ u                                                    (2) 
Equations of state for the density and the viscosity are: 

,0=
Dt
D ρ   

.0=
Dt
D µ                                                  (3) 

Continuity of stresses at the fluid boundary shows that the normal stresses are 
balanced by surface tension. The force due to surface tension is 

.knF σ=∆                                                    (4) 
     Three governing non-dimensional numbers of the flow are the Reynolds 
number (bulk and particle Reynolds numbers), the Weber number and the 
capillary number. Only two of these non-dimensional numbers are independent 
(one Reynolds number and the Weber or capillary number): 
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     Here      is the density of ambient fluid,      is the viscosity of the ambient 
fluid, R is the initial radius of the drop, H is the width of the channel and G is the 
shear rate. The shear rate is 

.
H
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where  ut  and  ub  are the velocity of top and bottom walls, respectively. 
     It is usual to define a scalar measure of the drop deformation (the Taylor 
deformation) by: 
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where l, b are the major and minor semi-axes of the drop (defined by the largest 
and smallest distances of the surface from the centre). 
     In addition, the collision or film drainage time is the time between the points 
where the centre-to-centre distance is equal to one undeformed drop diameter to 
the instant of coalescence. 

0ρ 0µ
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2.2 Numerical method 

Various methods have been used to simulate the two-phase flows. These 
methods include the Marker-And-Cell (MAC) method, the Volume-Of-Fluid 
(VOF) method, and the level set method. In general, the interface representation 
can be explicit (moving mesh) or implicit (fixed mesh) or a combination of both. 
The front-tracking method is combination of fixed and moving mesh method. 
Although an interface grid tracks the interface, the flow is solved on a fixed grid. 
The interface conditions are satisfied by smoothing the interface discontinuities 
and interpolating interface forces from the interface grid to the fixed grid. In this 
method, the governing equations are solved separately for each fluid. Front 
capturing has two difficulties. The first is a sharp boundary between the fluids 
and the second is accurate computation of surface tension. Different attempts 
have been made in overcoming these problems. 
     For the simulations presented here, the method developed by Unverdi and 
Tryggvason [11] is used. They simulated the motion of buoyant bubbles in a 
periodic domain. Eqns (1), (2), and (3) are solved in a rectangular three-
dimensional domain with a finite difference method. The spatial differentiation is 
calculated by a second order finite difference scheme on a staggered Eulerian 
grid. We use an explicit second-order time integration method. 
     Combining the incompressibility condition and momentum equations results 
in a non-separable elliptic equation for the pressure. Due to the similarity in 
density between the drop and the ambient fluid, a quick poisson solver solves the 
pressure equation. The force due to surface tension on each element of front is  

.∫
∆
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                                           (8) 

     In three-dimensional flow, the average surface curvature is  
.)( nnn ×∇×=κ                                         (9) 

     Then, the force on each element surface is 
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     The integration is over the boundary of each element representing the front. t 
and n are the tangent and the normal vector to each element, respectively.  

3 Results  

The reference system to describe the results is shown in fig. 1. According to 
experiments of Yoon et al. [9], initial offset is defined as the shortest distance 
from the centre of the drop to the inflow axis (∆) divided by drop radius R. The 
centre-to-centre distance between drops is 4R  as shown in fig. 1. The coordinate 
axes are oriented as follows: the x-axis is parallel to flow direction, the y-axis is 
parallel to the vorticity direction, and the z-axis is parallel to the velocity 
gradient. The relative trajectory of the two drops will be expressed in terms of 
the differences 

12 zzz −=∆ and
12 xxx −=∆ , where 

ix  and 
iz are the centre-of-
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mass coordinates of the ith drop. The difference ∆y between the y-coordinates of 
the two drop centres is zero.   
     In all plots, ∆x and ∆z will be made dimensionless by the radius R of the 
undeformed drops as the characteristic length. We will compare our results with 
experimental results of Guido and Simeone [7] and Yoon et al. [9] and numerical 
results of Loewenberg and Hinch [3]. Sequences (1-4) show the interactions 
between two drops in simple shear flow (fig. 2). Initially, each drop has the 
steady shape under same flow conditions.   

                                         z 

                                                                y 

                                                                                      x 

Rd 4

 

Figure 1: Schematic of the relative trajectory between a pair of deformable 
interacting drops in shear flow (Offset = ∆ / R). 

 

                                                                                 

              1                          2                       3                      4                 
 

Figure 2: Sequences (1-4) showing the interaction between two drops in 
simple shear flow with Ca = 0.13, Offset = 0.512, λ = 1. 

     In fig. 3, ∆z is plotted as a function of ∆x during approach, collision and 
separation between two drops. The data correspond to sequence depicted in fig. 
2. It can be seen that ∆z starts increasing after the drops come into apparent 
contact (∆x ~ -2R), reaches a maximum value, and, after separation, reaches a 
new steady-state value.  
     The final value of ∆z (which is 1.4 for offset = 0. 2, 1.52 for offset = 0.512, 
and 1.72 for offset = 0.8) is greater than the value before collision. In the other 
words, if the drops were made to collide again by reversing the flow direction, 
∆z increased further. So, the effect was irreversible, and repeated collisions lead 
to increasing values of ∆z until drop interaction became negligible (Guido and 
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Simeone [7]). This is also an agreement with the numerical simulations of 
Loewenberg and Hinch [3]. Experimental results of Guido and Simeone [7] was 
based on λ = 1.4 and numerical results of Loewenberg and Hinch [3] were 
presented for viscosity ratio of one.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Cross-flow separation (velocity gradient direction) versus ∆x / R 
between interacting drops with Ca = 0.13, λ = 1 (present work) and 
λ = 1.4 (experiment), and different offsets.  

     The deformation parameter is shown in fig. 4 as a function of dimensionless 
time with viscosity ratio of one and Ca = 0.3. Based on experimental observation 
of Guido and Simeone [7], deformation of two drops is the same. Deformation 
slightly increases, and then reaches a maximum, a minimum, a second 
maximum, and eventually reaches a steady state value from before the collision. 
Numerical simulations of Loewenberg and Hinch [3] show no difference before 
and after collision at low-Reynolds numbers. Comparison between the results 
shows that the time of approaching of drops at low initial offset is greater (for 
current simulations).    
     Following Allan and Mason [12] and Guido and Simeone [7], the minimum 
value of deformation is lower than the steady-state value before (or after) 
collision. This can be explained as the result of two processes: (i) relaxation of 
drop shape once they leave the compressional axis and (ii) action of the 
surrounding fluid on the drops.      
At fixed initial offsets, as the size of drops increases, the deformation increases 
as shown in fig. 5. We see that the approach-collision-separation times of drops 
are different owing to the different initial sizes. The film drainage time increases 
with increasing size of drops. The dimensionless drainage time is 5.21 for D / H 
= 0.3 and 5.86 for D / H = 0.36.  
      Fig. 6 shows the trajectories of the drops for different initial offsets with the 
same capillary number for a viscosity ratio of 1. As the initial offset increases, 
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the drops rotate more quickly and the available time for film drainage decreases 
as shown in fig. 6. Therefore, we should expect that the critical capillary number 
for coalescence will decrease with increasing offset. This was found in studies of 
Yang et al. [13], where the viscosity ratio was 0.096. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The deformation parameter as a function of dimensionless time 
between interacting drops with Ca = 0. 3, λ = 1 and different 
offsets. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The deformation parameter as a function of dimensionless time 
between interacting drops with Ca = 0. 075, λ = 1 and different 
size of drops.  

     In fig. 7 we see that the approaching parts of the trajectories are different from 
each other owing to different initial offsets. However, after the drops come into 
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contact, it can be seen that they follow the same trajectories of separation 
distance versus orientation angle (α) formed by the drop major axis and 
horizontal direction. This is an agreement with the experimental results of Yoon 
et al. (2005). They said that they have no explanation for this result.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 6: Trajectories of drops for different initial offsets, separation 
distance versus dimensionless time, with Ca = 0.00481, λ = 1 
(present work), and λ = 1.2 (experiment). 
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Figure 7: Trajectories of drops for different initial offsets, separation 
distance versus orientation angle (α), with Ca = 0.00481, λ = 1 
(present work), and λ = 1.2 (experiment).  
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4 Conclusion remarks 

The effects of geometry include initial offset and size of drops on the interaction 
of two equal-sized drops in simple shear flow has been presented using finite 
difference/front tracking method. Simulations were studied at finite Reynolds 
numbers for viscosity ratio of one.  
     The deformation, relative trajectories, and film drainage time were examined 
by changing the initial offset and size of drops. We changed offset and size of 
drops, Based on experimental data. It was found that ∆z increases after collision 
and reaches to a new steady-state value after separation. The values of ∆z, during 
the interaction, increases with the increasing initial offset. 
     Our results showed that the time of approaching of drops at low initial offset 
is greater than the other ones, but the maximum of deformation is the same for 
equal drop sizes. The deformation decreases with the decreasing size of drops. 
As the initial offset increases, that time for film drainage decreases. Also, the 
approaching parts of the trajectories are different from each other owing to the 
different initial offsets. However, after the drops come into contact, it can be 
seen that they follow the same trajectories of separation distance versus 
orientation angle formed by the drop major axis and horizontal direction, similar 
to experimental results. 
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