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Abstract

The behavior of a rivulet flowing down an incline is a fundamental problem in
hydrodynamics, with many important applications in water resources engineering,
largely because of its connection with natural meandering flows (rivers and
streams). Recent advances in the understanding of laboratory rivulet flows reveal
several important features of the rivulet behavior that are directly relevant to this
connection with natural flows. Rivulet meandering is triggered by irregularities in
the flow rate at the origin, and amplified by re-absorption of droplets left on the
inclined surface by the previous meanderings. This leads to a statistically non-
trivial behavior, with the spectrum of an ensemble of rivulet deviations from its
centreline obeying a power law. Some of the statistics of the laboratory rivulets
(e.g., the area swept by the rivulet) closely resemble those of real rivers (Hack’s
law). However, there are many important physical differences between rivulets
and real rivers. Among them is the fact that the flow in real rivers and streams
is often multiphase (sediment-laden). Here we present the results of laboratory
experiments with rivulets, where the flow down an inclined, partially wetting plane
carries a well-characterized particulate to model sediment flow. The most notable
change produced by the addition of the particles is the formation of a stationary
meandering pattern, which does not occur under the same conditions for the flow
without particles.
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1 Introduction

Rivers and streams meander, with their paths gradually changing, leaving behind
crescent lakes, eroding the shores [1], transporting sediment, and in the process
changing and defining the shape of Earth’s surface (Fig. 1a). Some of the most
famous natural monuments (such as the Grand Canyon) owe their existence to
river meandering [2]. Flow of ancient rivers is likely responsible for some very
prominent features on the surface of Mars ([3], also see Fig. 1b). As recently
revealed by the Cassini/Huygens probe, rivers also flow and meander on Titan [4],
the satellite of Saturn, although it is liquid methane, not water, that flows there
between the shores of ice at a chilly 93 Kelvin (Fig. 1c).

Meandering is affected by many complex factors, including turbulence in the
water, erosion of the soil on the bottom, unevenness of the soil properties, and
variations in flow rates due to the seasons. However, there are some simple
statistical properties that apply to all rivers and streams. The most notable of them
is Hack’s law, which defines a relationship between the length of a stream or river
L and the size of its drainage basin A (the area of land where water from rain
and snow melt drains downhill into the river). This law was discovered by an
American geophysicist J.T. Hack in 1957 [5]. Hack studied the streams of the
Shenandoah Valley and adjacent mountains in Virginia, and obtained a power-law
formula L = 1.4Ah, where h (Hack’s exponent) is a constant value which turns out
to be the same or almost the same for Shenandoah Valley and for several thousands
of other river basins for which measurements were made. The most common value
of h is about 0.57.

It is notoriously hard to answer exactly which of the multitude of the possibly
important and highly intertwined geological and meteorological factors contributes
most to the river meandering. As in many other cases where there is an interesting
natural phenomenon which is both too complicated and too big to fit in a lab
on a modest budget, physicists came up with an experimental model of gravity-
driven meandering flow – a rivulet on an inclined plane. This model can be easily
reproduced in a kitchen sink by placing a tilted cookie sheet under a slightly
opened faucet. In this kitchen-sink experiment, the tiny rivulet will meander,
producing a curious pattern not unlike a miniature river, although in a properly
maintained kitchen, there should be no precipitation, erosion, or sedimentation
interfering with the flow. Similar observations on somewhat larger sheets in
laboratory led to the conclusion that, since the rivulet always meanders, there must
be some inherent instability that causes it to behave this way. It was also commonly
thought that meandering of a rivulet has some kind of a most frequently occurring
spatial scale (called characteristic wavelength λ) associated with it.

However, the basic premise of many rivulet studies – that the rivulet will always
meander – was recently demonstrated to be incorrect, with perfectly straight, stable
rivulets (Fig. 1d) obtained experimentally [6,7]. The key element in stabilizing the
rivulets is the flow rate. It has to be maintained at a constant value, free of any
fluctuations. A discharge through a small hole in the bottom of a very tall reservoir
would have such fluctuation-free quality; a discharge from a kitchen faucet would
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Figure 1: Natural (a-c) and laboratory (d-e) flows, view from above, flow direction
is from top to bottom where known. a, Flow of Machadinho river, Brazil.
The image extent is about 12 km. Source: Google Earth/TerraMetrics.
b, Mars Express image of Nanedi Valles on Mars captured on October
3, 2004. Source: European Space Agency (ESA)/DLR/FU Berlin (G.
Neukum). The image extent is about 100 km. c, Cassini/Huygens image
of a river channel on Titan. The image extent is about 4 km. Source:
ESA/NASA/JPL/University of Arizona. d, Non-meandering flow (con-
stant flow rate) of a 50%-50% water-glycerine mix on acrylic substrate.
e, Meandering flow under the same conditions, with flow rate fluc-
tuations induced by a pulsed electromagnetically operated valve. The
overlay shows the centerline (gray dashed line), the coordinate system,
and the velocity components. The image extent in d and e is 2.4 m.

not. In most natural and laboratory flows, the flow rate will fluctuate, and thus the
stream will meander. Remove the fluctuations though, and you get a stable rivulet,
sometimes forming a pretty braiding pattern explained in our earlier work with
a simple theoretical model [7]. This study, however, did not attempt to provide a
similar explanation for the meandering flow regime that would emerge in the case
the flow rate was not constant.
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2 Meandering rivulet studies

In our subsequent experiments with a specially built inclined plane apparatus, we
tried several ways of perturbing the flow. We found that the best way to produce
meandering was to add an electronically controlled solenoid valve to the discharge
tube feeding fluid from the tall reservoir to the incline. With this valve squeezing
the tube every few seconds, the flow would start to meander (Fig. 1e). With the
valve turned off, it would gradually straighten out.

We took several hundred pictures of the meandering rivulet and started ana-
lyzing their statistics. We assembled a plot showing how often each meandering
frequency f , and corresponding length scale l = 1/f , show up in the picture
database. This plot (a power spectrum) revealed that for a wavenumber k = 2π/l,
the corresponding value of the power spectrum S(k) was proportional to k−5/2.
This relationship (a power law) holds in a range from the characteristic stream
width (about 5 mm) to the largest scale we can measure (2.4 m, the extent of our
inclined plane). Now, if a characteristic wavelength λ existed, it would correspond
to a characteristic wavenumber kmax = 2π/λ, where the spectrum would peak.
But the spectra we measure show no such peaks, in contradiction with what earlier
works had suggested.

Power-law statistics are Nature’s way of telling us that something simple and
profound is happening. Thus we tried to explain the behavior of the stream in our
experiment with a model that only takes into consideration the most basic features
of our flow. We averaged out velocity variations in the stream cross-section. We
replaced the actual (variable) value of the contact angle between the fluid, the air,
and the surface, with another average [8]. Finally, we radically simplified one very
important feature of the stream. A real meandering stream on a partially wetting
plane sheds droplets as it changes its course, like a meandering river leaving
crescent lakes in its old path (of course, in the latter case, the process is much more
complex). These droplets may get reabsorbed into the rivulet during subsequent
meanderings. The physics of each such event are rather complex, but, instead
of trying to model it exactly, we account for such stream-droplet interactions by
adding a random forcing term to our equations. This term has to be statistically
faithful to what we see in experiment, but it is much simpler to deal with. We
derived two equations (for the two coordinates in the plane) describing the fluid
moving due to a combination of surface tension, gravity, shear in the flow near
the surface (lubrication approximation), viscous dissipation inside the fluid, and
random forcing due to droplets. We added the law of conservation of mass (in
the form of a continuity equation). Thus we obtained a simple system that could
be quickly solved numerically using an ordinary personal computer. This model
system can produce rivulet shapes in the plane that are very similar to those we
saw in experiment, and with the same statistical properties.

We repeated our experiments on several surfaces made of different materials,
with different static contact angles. The higher the contact angle, the easier it is
for a droplet to roll off the surface. Fewer droplets mean weaker random forcing,
and that reflects in a slower growth of the meandering amplitude, again in nice
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agreement with our theory [9]. However, on each surface we studied, the scaling of
the power spectrum was the same: S(k) ∼ k−5/2. Working with different surfaces,
we found another curious thing. A real river has a drainage basin. Our rivulet
also has a drainage basin of a sort – it can encounter droplets left by the previous
meanderings, and these droplets are typically confined between the rivulet path and
the rivulet’s initial course before we began perturbing the flow (the straight line).
What turned out is that the area of this “drainage basin” obeys the same scaling law
as the drainage basin of a real river – Hack’s law! Moreover, our theory predicts
how the value of Hack’s law exponent is related to the scaling of the meandering
power spectrum. If that scaling is -5/2, then Hack’s law exponent should be 4/7 [8].
Surprisingly, 4/7 approximately equals 0.57, the same value we see in laboratory
rivulets and in real rivers.

3 Observations of stationary meandering

One of the notable differences between our work and some of the earlier experi-
ments lay in the rarity of observed stream pinning events. Pinning (or stationary
meandering) occurs when a meandering flow pattern ceases to change with time.
While it was reported to occur fairly commonly by other researchers [10], in our
experiments pinning was rare and could always be attributed to the inclined plane
being contaminated with dust or dried-up residue from earlier experiments. With
the incline wiped clean and the experiment restarted, pinning did not re-occur.
Meandering would persist for as long as the flow rate was perturbed by the solenoid
valve. If the flow rate perturbation ceased, the flow would gradually transition to a
straight rivulet stationary state.

Unlike our laboratory rivulet, natural flows are always multi-phase to some
extent, carrying sediments, organic matter (e.g., dead skunks), and debris. As the
flow rate changes in an alluvial system, scour or deposition will occur, further
affecting meandering patterns [11]. Sediment transport was believed to be nec-
essary for flow meanders [12], however, experiments without sediment transport
also manifest meandering [8, 10, 13]. While the notion of meandering as an
inherent global flow instability that arose in the 1980s [13] has been experimentally
disproven [6, 7], transverse shear stress distribution along the wetted perimeter
of the meandering stream [14] likely still plays a role in meandering. It is also
notable that, in the case of natural flows, their course can also persist for a long
duration. This persistence can be aided by erosion of the riverbed. On the other
hand, strong (catastrophic) changes in the natural flow rate can lead to changes in
the established course of the stream. Thus we attempted to bring our experiment
one step closer to these natural flows by adding a particulate phase to the fluid.
In the experiments described here, the fluid was Albuquerque tap water (with
small naturally occurring salinization), and we added a particulate phase to it. The
latter was comprised of small, nearly monodisperse (500 ± 75 μm), and almost
neutrally buoyant (specific gravity ∼ 1.05) polystyrene microspheres, in fractions
that were varied from 0.5 to 5% of the total volume of the flow. The water-particle
mixture was driven into the tall reservoir by a peristaltic pump from a reservoir
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that collected the runoff from the bottom of the inclined plane. On the time scale
characterizing the experiment, settling of the particles in the top reservoir was
negligible.

The resulting behavior of the multiphase meandering flow (Fig. 2) turned out to
be quite interesting. There was no qualitative difference between the pure water
flow and the flow of the water with particles when the flow rate was periodically
disrupted by the solenoid valve (flow reduction by 25% for 0.1 s every 2 s) – in
both cases, the flow continued to meander. The difference emerged, however, when
the valve was turned off. The pure water flow in that case eventually reverted to
a straight rivulet, with relaxation times between 40 minutes and 2.5 hours. Under
the same conditions, the flow with particles simply retained its course for as long
as the experiment was run (up to 4 hours).

4 Discussion and future work

Consider a stationary bend in the rivulet. It doesn’t have to be stationary in the
strict sense, just stable enough to persist on the time scale of interest (several
minutes). For this bend, the hydrodynamic centrifugal force is balanced by the
pressure gradient. At least, this should be the case for the flow of a pure fluid.
However, if a heavy (non-neutrally buoyant) particle is present in the flow, it will
be subject to the centrifugal force as it passes the bend.

This particle can cause pinning if it gets trapped near the edge of the rivulet as
shown in Fig. 3, A-A. The unbalanced force acting upon a particle of radius a is

F = �ρa3 U2

R
,

where �ρ is the density difference between the particle and the fluid, U is the flow
velocity and R is the radius of curvature of the bend. Drift velocity towards the
edge can be estimated as

v = F

6πρaν
= �ρ

ρ

a2

6πν

U2

R
,

where the denominator represents Stokes drag on the particle. Sedimentation near
the edge happens if vτ ≤ d , where τ = L/U is the time it takes for the
flow to travel the length of the bend, and d is the characteristic cross-stream
distance. Assuming L � πR, which holds exactly if the bend is a semi-circle,
the probability p of sedimentation for a single particle traversing the bend is

p = �ρ

ρ

a2U

6νd
. (1)

For our flow, the characteristic values are as follows. U ∼ 1 m/s, d ∼ 0.01m,
�ρ/ρ � 0.05, ν ∼ 10−6 m2/s, a � 5 × 10−4 m. Thus p ∼ 2 × 10−3. Once a
particle passes through the bend without being stuck it will move to next bend and
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Figure 2: Snapshots of meandering multiphase flow. The flow direction is from
top to bottom, the physical extent of the imaged area in this direction
is 2.4 m. The images are separated with an 8-second interval. In the
first three images (top row, a-c), the flow is subjected to a periodic
perturbation in the flow rate, causing continuous meandering. Between
the third (c) and fourth (d) image, the flow rate perturbations cease,
producing a stationary meandering pattern (bottom row, d-f). In the
images shown, the flow is a mixture of 99% water with 1% 500-
micron polystyrene microspheres by volume, and the flow rate is about
100 cm3/s.
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Figure 3: Left – view of a rivulet flow carrying particles through a bend. L and
R are the characteristic length and radius of the bend. A-A (bottom
center) shows a cross-section view of the rivulet, with d being the
characteristic cross-sectional size. Top center – photo close-up of a
stationary meandering rivulet (note that the contact angles on both sides
are the same). Top right – photo close-up of a transient (non-stationary)
meandering rivulet with different advancing and receding contact angles.

so forth. An interesting feature of equation (1) is that the probability of being stuck
at the bend does not depend on the bend’s radius.

Let us now consider a more realistic situation when many particles are moving
through the bend at the same time. Suppose the density of particles per unit volume
is α. Since the cross-section of the stream is of the order d2, there particles are
moving through the fluid bend with the rate

n � αd2U .

Thus, after the time t , N = αd2Ut particles will have passed through the bend. The
probability of a single particle passing through the bend is 1−p. The probability of
N independent particles passing through (assuming that the particles are spread far
enough for each sticking event to be statistically independent) is (1−p)N � e−Np.
Thus the probability of at least one of N particles sticking ps as they go through is

ps = 1 − e−Np = 1 − e−αd2Utp = 1 − et/Ts . (2)

Again, interestingly enough, the probability of pinning is characterized by the
flow parameters, but is not dependent on the bend’s characteristics. We can thus
define the time scale Ts for particle pinning in a single bend as

Tp ∼ 1

αd2Up
. (3)

After the time t � Tp, the meandering trajectory of the rivulet will be frozen in
time with probability being almost 1. More precisely, if we define Tp as the time
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after which the probability of meandering being frozen is, say, 90%, then we get a
more precise version of formula (3):

Tp = log 10

αd2Up
. (4)

Consider the typical particle concentration producing pinning in our experi-
ments – 5% by volume. This means that 1 cm3 contains about α = 95 particles
with the radius of 500 microns. Assuming a characteristic cross-sectional stream
area d2 ∼ 0.1 cm2, the volume of the flow traversing this area in one second is
10 cm3, about a thousand particles will be carried through each cross-section per
second. Then, (4) gives Ts ∼ 1.2 sec, which explains a near-instantaneous pinning
of the stream. While equation (4) is of course just a rough estimate, it is useful
in evaluating the order of magnitude for the pinning time, which is clearly small.
More detailed evaluation of the pinning time can be obtained by constructing a
more detailed model of particle motion very close to the contact line, improving
on a rather simple-minded version of the Stokes drift we have utilized here.

Note that pinning does not occur when the flow rate is subjected to fluctuations
as described in the previous part. In the immediate future, we will study the
sensitivity of a pinned (stationary) rivulet to flow-rate perturbations varied in
duration, frequency, and intensity. While our simple model deliberately does
not include many aspects of real streams (such as an erodible riverbed), the
relationship between flow-rate fluctuations and the transition between stationary
and non-stationary meandering can provide some insights into one important
aspect of the behavior of natural rivers. Most of these rivers change their course
somewhat infrequently, although their flow rates do fluctuate quite a bit. However,
an unusually strong fluctuation (for example, due to a particularly intense rainfall)
still can destabilize the course of a real river. With global climate change affecting
the precipitation patterns throughout the world, any quantitative insights into what
amount of fluctuation in the flow rate could cause a catastrophic change in the
course of a natural stream would be very helpful.
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