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Abstract 

Relations are derived between time-averaged quantities of bubble turbulence, 
liquid velocity, static pressure and gravitational force, based on a careful 
treatment of the Navier-Stokes equations with certain approximations. The liquid 
phase is modeled as a combination of a bulk phase and a cloud phase.  Time-
integration of the substantial derivative term in the Navier-Stokes equation for 
the cloud phase yields the difference between the total convective transport of 
liquid momentum from the cloud phase to the bulk phase and that from the bulk 
phase to the cloud phase, throughout the time of integration.  The difference can 
be interpreted as bubble turbulence entering into the bulk phase, which should be 
convectively transported in the bulk phase.  Finally, relations between time-
averages of the bubble turbulence, liquid velocity, static pressure and 
gravitational force are obtained through time-integration of the Navier-Stokes 
equation for the cloud phase.  The resulting equation can be used to deduce, 
analytically or numerically, the macroscopic properties of gas-liquid multiphase 
flow in combination with a two-fluid model equation, for instance.  These 
equations are applied to recirculating turbulent flow in bubble columns operating 
at high gas feed rates, and together with a simple model for the bubble 
turbulence we derive the well-known parabolic distribution of gas holdup. 
Keywords: gas-liquid multiphase flow, macroscopic property, time-average, 
Navier-Stokes equation, cloud phase, gas holdup distribution, two-fluid model, 
recirculating turbulent flow. 
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1 Introduction 

Gas-liquid multiphase flow is widely used in the chemical, pharmaceutical and 
petrochemical industries to realize effective mass transfer, heat transfer and 
chemical reactions between gas and liquid phases.  Gas-liquid multiphase flow in 
industrial apparatus usually involves a high gas volume fraction, to maintain 
high contact surface area between the two phases.  Numerous studies have been 
made to determine and control the macroscopic properties of gas-liquid 
multiphase flow.  Previous studies can be classified into three categories: 
numerical studies based on a two fluids model equation; approaches that build up 
from an understanding of the interaction between individual bubbles and the 
surrounding flow field; and studies of macroscopic properties of gas-liquid 
multiphase flow.   
     Numerical studies have become common as a result of the development of 
computer hardware and software.  These works are based on a two-fluid model 
equation in which the interfacial force term comprises forces acting on a single 
sphere [7,16].  However, a volume-mean, for instance, of the interfacial force 
acting on bubble surfaces in a reference volume should reflect contributions of 
the forces acting on a bubble and the distribution of gas holdup.  This argument 
is valid for any two-fluid model equation regardless of the details of the 
averaging.  The interfacial force term in the two-fluid model equation therefore 
should represent the combined effect of forces acting on a bubble and the spatial 
distribution of gas holdup. 
     The approach that proceeds from an understanding of the interaction between 
a single bubble and the surrounding flow field has already been helpful in 
studying dynamics of a single bubble in various flow fields [4,5,8].  This 
approach needs adapting to deal with gas-liquid multiphase flow with relatively 
high gas hold up and the effects of surrounding bubbles.  
     Studies based on macroscopic properties of gas-liquid multiphase flow 
proceed from known macroscopic properties to provide an understanding of 
basic phenomena such as interaction between a single bubble and the 
surrounding flow field.  Sato et al. [6] introduced the notion of bubble 
turbulence, and showed that the measured radial distribution of the mean liquid 
velocity accurately coincides with model prediction based on the measured radial 
distribution of gas holdup together with the eddy diffusivity for fully developed 
turbulent flow and the calculated Reynolds stress due to bubble turbulence.  The 
success of this model implies that bubble turbulence is important in determining 
macroscopic properties of gas-liquid multiphase flow.  Zhang and Ahmadi [16] 
showed that a modification of εκ −  model taking bubble turbulence into 
account could accurately reproduce the time-averaged velocity profile in bubbly 
flow based on a two-fluid model equation. 
     In the present work, a phenomenological definition of bubble turbulence is 
given by time-averaging the Navier-Stokes equations as proposed by Ueyama 
and Miyauchi [9], for a cloud phase surrounding the bubbles.  A general relation 
between bubble turbulence and turbulent flow quantities is derived which can be 
used to deduce macroscopic properties of gas-liquid multiphase flow.  The 
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assumptions used to obtain this relation are analyzed and shown to be acceptable.  
Finally, the well-known parabolic distribution of gas holdup for recirculating 
turbulent flow in bubble columns operated at a high gas feed rate [2,3,10–12,15] 
is obtained as an analytical solution of our relation. 

2 Definition and notation for time-averaging 

We can time-integrate the Navier-Stokes equations, at a fixed point in space, for 
the bubble phase, liquid phase or for any fixed quantity of fluid we define 
mathematically by its bounding surface.  The time-averaged Navier-Stokes 
equations for the bubble or liquid phase give relations between time-averaged 
physical quantities for those phases. 
     Turbulence induced by bubble motion relative to the surrounding liquid, 
henceforth referred to as bubble turbulence, plays an important role in a 
mechanism controlling the gas holdup distribution [6,16].  Let us consider the 
liquid phase as comprising a cloud phase and a bulk phase in discussing the 
effect of bubble turbulence on the mechanism of gas-liquid multiphase flow.  We 
suppose that each bubble is surrounded by a cloud, in which bubble turbulence is 
generated by relative motion between the bubble and liquid.  At this point we are 
not concerned whether the cloud includes multiple bubbles and the physical 
definition of the cloud is not necessary for the time-averaging procedure.     
     Bellow, the notations involved in the time-averaging procedure are set out, 
and the definition of the cloud phase is stated.  Time-integration is performed at 
a fixed point in space over a sufficiently long intervalΛ  to obtain reliable time-
averaged values.  The gradient of a physical quantity q  can be time-averaged as 
in eqn (1). 
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     Here, the suffix c  refers to the cloud phase and the superscript Λ  denotes the 

time-averaged value over a time intervalΛ .  A notation Λc  denotes the sum of 
individual time lengths during which the cloud phase is continuously observed.  

A superscript 
c

 refers to the value averaged over a time interval Λc , and ∫
Λc

dt  

refers to integration over the time during which the cloud phase is continuously 
observed.  We denote by T a

i  and Tl
i  the arriving and leaving time of the i-th 

bubble.  Notations T a
j′  and T l

j′  respectively denote the arriving and leaving 

time of the j-th cloud.  The values of T a
i , Tl

i , T a
j′  and T l

j′  depend on position.  
The symbols M  and N  denote the total numbers of clouds and bubbles, 
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respectively.  The vector ξ  is the gradient vector of the surface Tt a
i= , Tt l

i= , 

Tt a
j′=  or Tt l

j′= . 

T∇=ξ                                                             (2) 
     If us  is a moving velocity vector of bubble surface, it follows that: 

1=⋅ξus                                                            (3) 
     If there is no mass transfer across the surface, the following eqn (4) is 
obtained, because ξ  is normal to the surface. 

( ) 0=⋅− ξuu s                                                   (4) 
     In the absence of mass transfer across the surface, it then follows that: 

1=⋅ξu                                                             (5) 

3 Time-integrations of terms in the Navier-Stokes equations 

3.1 Substantial derivative term 

Upon applying eqns (3), (4) and (5), a substantial derivative term can be time-
averaged, as follows: 
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     Here ρ  and u  respectively denote the density and velocity vector of the 
liquid.  A vector  ξT a

j′
 can be rewritten using the normal unit vector n  at the 

surface, as: 
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     Let us choose the direction of n  toward the movement of the cloud surface, 
in order to interpret the second term on the right hand side of the final term in 
eqn (6).  The term ( ){ } ξuuu Ts T

a
j

a
j ′′
⋅−− ρ  can be rewritten as: 
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     Since liquid is flowing into the cloud phase from the bulk phase, and the 
cloud surface is moving towards the bulk phase at Tt a

j′= , the numerator on the 
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right hand side of eqn (8) is the flux of momentum transported convectively from 
the bulk phase to the cloud phase.  The denominator is the volume swept by the 
surface per unit time.  The right hand side of eqn (8) can be understood as the 
total impulses, divided by the total time, per unit volume added at the instance 
when the cloud arrives at the time-averaging point, that is due to convective 
transport of momentum from the bulk phase to the cloud phase. 
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Figure 1: Schematic diagram of the bubble, cloud and bulk phases. 

     We thus conclude that the second term on the right hand side of the final term 
in eqn (6) is the difference between liquid momentum transported convectively 
from the cloud phase to the bulk phase and that from the bulk phase to the cloud 
phase; that is, the convective transport term of the bubble turbulence momentum, 

u′bρ , into the bulk phase; this represents an input of bubble turbulence 
momentum to the bulk phase. 
     The input of bubble turbulence momentum is immediately transported by 
liquid flow in the bulk phase, and it should therefore be balanced with the time-
averaged convective transport of bubble turbulence, uu′⋅∇− b

b
b ρΛ , for the bulk 

phase.  Here, Λb  is a sum of individual time durations during which the bulk 

phase is continuously observed.  The superscript b  signifies a time-averaged 

value over the time intervalΛb .  The balance between input and convective 
transport terms for bubble turbulence is expressed as: 
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     From eqns (6) and (9), time-integration of the substantial derivative term 
leads to eqn (10). 
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     Here, u′L  is turbulence other than the bubble turbulence u′b , and is assumed 

to be independent of the bubble turbulence.  The superscript l  refers as usual to 
a time-averaged value over the time interval ΛΛΛ cbl += , that is the entire 
duration during which the liquid phase is observed. 

uuuuuu ′+′+=′+= Lb
ll ,                                     (11) 

     In eqn. (11), u′  is a fluctuating component of the liquid velocity. 
     Eqn (12) holds in the cloud phase, because the bubble turbulence is newly 
generated there: 

uuuu ′′>>′′ LLbb
cc                                            (12) 

     By applying the condition  (12) in eqn (10), we find that:. 
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     The second term on the right hand side of eqn. (13) is obtained from the 
general property of time-averaging.  The right hand side is given by the physical 
components time-averaged over the entire duration for which the liquid phase is 
observed.  This will enable us to construct a simple physical model for the 
bubble turbulence. 

3.2 Static pressure term 

We have: 
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     The second and third terms on the right hand side are surface terms 
representing the effect of static pressure at the bubble surface and cloud surface, 
respectively.  In the conventional two-fluid model equation, the surface term for 
the static pressure acting on unit volume of a particular phase is given as the 
product of the mean static pressure and the gradient of a local fraction of the 
phase; 

( ) 





∇=









∑ 




 −+∑ −

==
′′′′ Λ

Λ
Λ

ccM

j

N

i
PPPPP TTTTTTTT a

j
a
j

l
j

l
j

l
i

l
i

a
i

a
i 11

 1 ξξξξ               (15) 

     From eqns.(14) and (15), it follows that: 
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3.3 Stress tensor term 

We have: 
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     The second term on the right hand side is a surface term due to the viscous 
force at the bubble surface.  This can be calculated by time-averaging the Navier-
Stokes equations for the gas phase in gas-liquid multiphase flow, neglecting the 
density and viscosity terms[9,13,14]: 
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     The third term on the right hand side of eqn (17) is a surface term due to the 
shear stress at the cloud surface.  It should cancel with the effect of shear stress 
at the bubble surface when the cloud thickness is negligible.  The third term 
vanishes when the cloud phase entirely occupies the liquid phase.  Hence, the 
third term can be approximated as: 
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     The right hand side goes to ( )P
ll ∇

−
Λ
ΛΛ   when Λc  vanishes, and is zero 

when ΛΛ lc = .  By substituting eqns. (18) and (19) into eqn (17), we have: 
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3.4 Gravitation term 

We have: 
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4 Time-integrations of the Navier-Stokes equations for the 
cloud phase 

We now have, from eqns.(13), (16), (20) and (21): 
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     The absolute value of the second term on the right hand side is usually very 
small compared to that of the second term on the left hand side, the first term on 
the right hand side, or the third term on the right hand side, in which case: 
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     Ueyama has derived the following equation from the Navier-Stokes equations 
time-averaged for the liquid phase in gas-liquid multiphase flow [9,13,14]: 
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     By substituting eqn (24) into eqn (23), and neglecting the second terms on the 
right hand sides of eqn(24) in comparison with the Reynolds stress term in the 
first term on the right hand side of eqn (24), we have: 
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     The gravitation term cancels in deriving eqn (25).  The physical quantities in 
eqns (23) and (25) are all time-averaged values over the time interval Λl , which 
is the total duration during which the liquid phase is observed.  Eqn (23) gives a 
relation between bubble turbulence, static pressure and gravitational force, and 
eqn (25) is a relation between the tensors uu ΛΛ ll , uu ′′ bb

lΛ  and uuΛl .  In 
combination with the two-fluid model equation, eqns (23) and (25) allow us to 
deduce the macroscopic properties of gas-liquid multiphase flow. 

5 Gas holdup distribution for recirculating turbulent flow 

In this section, eqn (23) is applied to recirculating turbulent flow in large scale 
bubble columns operating at high gas feed rates.  The radial and angular 
component of the time-averaged velocity are both zero, the axial and angular 
gradient of time-averaged quantities are zero, and no stationary swirl flow is 
observed in such a flow field [2,3,10–12,15].  The radial distribution of gas 
holdup for the recirculating turbulent flow can be expressed as:   

( )φεε n−= 10                                            (26) 

Table 1:  Values of n for the gas holdup distribution. 

D T [m] U G [m/s] gas distributor n

single nozzle

single nozzle

single nozzle

perforated plate

perforated plate

 
 

 
     Here, ε  is the gas holdup defined as the ratio 

Λ
Λl , and ε 0 is the gas holdup at 

the center of the column.  We define a dimensionless radial coordinate 
R

r=φ , 
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and n  is a fitting parameter. Ueyama [10, 11] obtained numerical values of n  
which fit the measured distribution of gas holdup, as shown in Table 1. 
     The values of n  in Table 1 are scattered around n = 2. 
     Eqn. (27) was obtained from the Navier-Stokes equations, time-averaged for 
gas-liquid multiphase flow [13].   
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     Here, ε m  is a cross sectional mean of the gas holdup, εW  is the gas holdup 
at the column wall, and τW  denotes the shear stress.  Ueyama and Saitoh [14] 
recently showed that the radial distributions of the Reynolds stress measured by 
Degaleesan [1] agree very well with eqn. (27) for the parabolic distribution of 
gas holdup, as shown in Figure 2. 
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Figure 2: Prediction based on a parabolic gas holdup distribution and 

Degaleesan’s data [1] for the radial distribution of Reynolds stress.  

     It can be concluded that the radial gas holdup distribution is parabolic for the 
recirculating turbulent flow in bubble columns.  Below, we shall derive the 
parabolic distribution from eqn. (23). 
     Eqn. (28) is obtained from Navier-Stokes equation time-averaged for gas-
liquid multiphase flow [9,13,14]. 
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     The axial component of eqn (23) becomes, upon exploiting eqn. (28): 
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     The value of this expression depends strongly on the motion of bubbles 
surrounding the spatial point at which time-averaging is performed.  We now  
construct a simple model to deduce the value of the left hand side, using a  
Cartesian coordinate system for gas-liquid multiphase flow with gas holdup 
distributed in the x-direction and homogeneous in the y- and z-direction.  When 
bubbles are rising, in the z-direction, the value of ∫ ′′

Λl

dtuu bzbx
 consists of a 

contribution due to bubbles which have passed through the x+  region, which is 
a region with x-value greater than that of the time-averaging point, and a 
contribution from bubbles in the x−  region.  Represent the contribution of  the 

x+  bubbles as ( ){ }λε +xF , where ( )λε +x  is the gas holdup at λ+x .  The 

contribution of  the x−  bubbles can be expressed  as ( ){ }λε −− xF , since the 
sign of the bubble turbulence velocity, u bx′ , to be coupled with u bz′ is opposite 

to that of the contribution of the x+  bubbles for the same value of u bz′ .  Hence, 
the value of ∫ ′′
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     Here, ( ) ( )ε
ε

λξ F
d
df 2≡ .  Eqn (31) is different from the model proposed by 

Sato et al. [6], which took the value to be proportional to the gas holdup ε : 
however, the present model may fit the phenomenon better. 
     By substituting eqn (31) into eqn (29), we have: 
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     Upon taking a polynomial expression for ε  and ( )εf , the following 
solutions are obtained in the case where the parameter α  is constant. 

( )φεεεε 2
00 −+= W                                         (33) 
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     Eqn. (33) gives the parabolic radial distribution of gas holdup, which has been 
known empirically for forty years. The most dubious assumption involved in 
deriving the parabolic distribution is that the value of 

Λ
Λα

l
c=  is constant 

regardless of the gas holdup value.  However, the assumption of constant α  is 
acceptable because, even if the value of α  depends on the gas holdup, there 
should be a minimum positive value of α which we can adopt in deriving 
eqn. (29). 

6 Conclusion 

The Navier-Stokes equations have been time-integrated for the cloud phase 
which surrounding each bubble.   
     A phenomenological definition of bubble turbulence is clearly introduced as 
the liquid momentum generated in the cloud phase. 
     It is also shown that the bubble turbulence generated in the cloud phase acts 
as  an input of liquid momentum in the bulk phase, and is in balance with 
convective transport in the bulk phase. 
     Eqs. (23) and (25) above show the relation between the bubble turbulence and 
the time-averaged velocity field of gas-liquid multiphase flow. 
     By applying eqn. (23) to the recirculating turbulent flow in bubble columns, 
the well-known  parabolic radial distribution of gas hold up is obtained as an 
analytical solution. 
     Eqns. (23) and (25) can be applied to any kind of gas-liquid multiphase flow, 
so as to deduce macroscopic properties of the multiphase flow. 

Symbols 

DT :  column diameter [ ]m  
g : gravitational acceleration [ ]sm 2−⋅  
g : vector of gravitational acceleration vector [ ]sm 2−⋅  
M : total number of clouds 
n : fitting parameter in eqn. (27) [ ]−  
N : total number of bubbles 
P : static pressure [ ]Pa  
q : physical quantity 
r : radial coordinate [ ]m  
R : column radius [ ]m  
t : time [ ]s  

T a
i : arrival time of the  i-th bubble [ ]s  
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Tl
i : time of leaving of the i-th bubble [ ]s  

T a
j′ : arrival time of j-th cloud [ ]s  

T l
j′ : time of leaving of the j-th cloud [ ]s  

u : velocity [ ]sm 1−⋅  
u : velocity vector [ ]sm 1−⋅  
u′ : fluctuating velocity vector [ ]sm 1−⋅  

u′b  velocity vector of bubble turbulence [ ]sm 1−⋅  

u′L  vector of turbulence independent of bubble turbulence [ ]sm 1−⋅  

U G : superficial gas velocity [ ]sm 1−⋅  
x :  Cartesian coordinate [ ]m  
y :  Cartesian coordinate [ ]m  
z :  axial coordinate [ ]m  
 
α : parameter defined by 

Λ
Λα

l
c=  [ ]−  

ε : gas hold up defined by ( )
Λ

Λε l−= 1  [ ]−  

ε 0 : gas holdup at column center [ ]−  

εW : gas holdup at column wall [ ]−  

εm : cross sectional average of gas holdup [ ]−  
Λ : duration for time averaging [ ]s  

Λb : total time during which bulk phase is observed [ ]s  

Λc : total time during which cloud phase is observed [ ]s  

Λl : total time during which liquid phase is observed [ ]s  
ξ : gradient vector at surface [ ]ms 1−⋅  
τ : tensor of shear stress [ ]mPa 1−⋅  
φ : dimensionless radial coordinate defined by 

R
r=φ  [ ]−  

 
Suffixes and other notations 
b : bulk phase or bubble turbulence 
c : cloud phase 
l : liquid phase 

T a
i : value at surface Tt a

i=  

Tl
i : value at surface Tt l

i=  

T a
j′ : value at surface Tt a

j′=  
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T l
j′ : value at surface Tt l

j′=  
b

: time-averaged value for duration Λb  
c

: time-averaged value for duration Λc  
l

: time-averaged value for duration Λl  
Λ

: time-averaged value for duration Λ  

∫
Λc

dt : sum of the time integration for individual time integral during which the 

cloud phase is continuously observed 
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