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Abstract

Volume-fraction weighted and Reynolds averaged momentum transport equations
are solved in an Euler/Euler approach to numerically simulate the turbulent,
dispersed two-phase flow in a two-dimensional channel and a three-dimensional
conic diffuser flow. Particular attention is given to the modelling of turbulent
diffusion and particle wall interaction, assuming local equilibrium, but introducing
individual terms for particle/fluid drag interaction, particle collisions and trajectory
crossings. These influences have been quantified in terms of partial viscosities, a
restitution power and a turbulence structure parameter. Boussinesq approximations
have been used for each phase and the formulation of their interaction was
provided in the framework of the eddy-viscosity modelling concept.
Keywords: two-phase flow, particle diffusion, particle collision, fluidised bed.

1 Introduction

The momentum transport equation includes a turbulent diffusion term, which
characterises motions that are not resolved by the convective term. This turbulent
diffusion depends on the turbulent kinetic energy and the turbulence characterising
Eulerian time scale. Based on ”Csanadys Approximation” [3], the time scale of
the dispersed phase is coupled with the turbulent time scale of the continuous
phase. This time scale quantifies the diffusion intensity [5] and is influenced by
the drag interaction of the particles with the viscous gas phase and inter-particle
collisions [4, 9]. The fluctuation of a filtered variable φ is written:

{φ}k = φ− < φ >k . (1)
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The index k stands for C (continuous phase) or D (dispersed phase). The
following negation notation is used here, i.e. C̄ = D, D̄ = C. The drag force
relaxation time scale τ k

p depends on the particle Reynolds number, based on the
velocity difference between the continuous and the dispersed phase [12], see e.g.
Crowe et al. (1998) [2]. The equation terms are described with the help of an
averaging operator < . >k [11]:

< uk
i >l= αluk

i

ᾱl
; uk

i =< uk
i >l +{uk

i }l . (2)

Summarising the different diffusion generating components to a combined
particle-turbulence shear stress model the diffusion of dispersed particles is
predicted very well, especially inside turbulent shear layers.

2 Transport equations

Modelling the diffusion character of particle flows transported in a viscous carrier
phase the diffusion is not dominated by the eddy dissipation as it is in turbulent
shear flows in a continuous gas phase. This dispersed phase diffusion is charac-
terised by unsteady drag influences and crossing trajectory characteristics defined
by the correlation of velocities of the continuous phase and the dispersed phase
itself. The Reynolds averaged, volume-fraction weighted momentum transport
equations for the continuous and the dispersed phase read:
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(ρkᾱk < {uk
i }k{uk

j }k >k) (3)

Collision and crossing trajectory terms were approximated by Grad [4] and
Csanady [3]. The pressure gradient of the continuous phase is equivalent to the
lift force. And the sum would be zero in a hydrostatic case. σk

ij defines the viscous
stresses inside the phase k. Because of the solid character of the dispersed phase
σD

ij is zero.
The underlying turbulence model for both phases is based on the Boussinesq

analogy, employing eddy viscosity as the model quantity, whose formulation was
provided in the framework of the standard k − ε modelling concept. kC defines the
turbulent kinetic energy of the continuous phase. The corresponding variable of
the dispersed phase kD describes the particle velocity variance at a given position.
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with σC
k = 1, 0 and σD

k = 2.5 (4)

The transport equations for the turbulent kinetic energy kk and its dissipation rate
εk
t differ from those for a single-phase flow by several additional production terms

and the modified dissipation. This total turbulent kinetic energy loss εk
α in the

present model arises from relative drag and particle collision processes.

∂

∂t

(
ρkᾱkεk
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with σC
ε = 1.3, C1 = 1.44, C2 = 1.92, C3 = 1.2 (5)

Because of the different phase velocities inside the drag relation term a general
formulation is needed for the complimentary index of k. The velocity covariance
qk =< {uk

i }k{uk̄
i }k̄ >k of He and Simonin (1993) [5] represents the trace of the

velocity vector correlation tensor of both phases:
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, (6)

which completes the present three-equation model for each of both phases. Veloc-
ity correlations, representing the turbulent momentum diffusion, are modelled by
the following Boussinesq approximations:
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Modelling the viscous continuous phase the eddy viscosity is modelled based on
eddy dissipation relating components. Because of the phase interaction influence
on the turbulent diffusion of both phases an additional transport equation for the
velocity covariance has to be defined. The diffusion coefficients of momentum and
turbulent transport equations are given by the characteristic diffusion time scale τ k

α :

νk
t = τ k

α · 2

3
kk and νk

α = τ k
α · 2

3
qk . (9)

To close the present formulation of particle and carrier gas phase motion this time
scale has to be modelled. Based on this new kind of particle diffusion modelling
also equilibrium-turbulence boundary conditions are modified by the influences of
inter-particle collisions and phase-interactions of dispersed and continuous phase.

3 Diffusion modelling

Based on this model of momentum diffusion, which depends on the velocity
gradients of the diffusing phase, the characteristic diffusion time scales have
to be defined by the velocity correlation and its associated loss rate εk

α . Local
equilibrium describes the equivalence of production and loss of turbulent kinetic
energy. Assuming ∂/∂x1 ≈ 0 yields an expression (i = 1, j = 2) for the non-
diagonal element of the Reynolds stress tensor.
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the turbulent viscosity is calculated using the turbulent kinetic energy kk , its loss
rate and the turbulence structure parameter. Based on the diffusion definition (eq.9)
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Table 1: Restitution power and turbulence loss components.
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the turbulent time scale is also defined by these values:
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With the definition of the restitution power πk
α , the turbulent viscosity is deter-

mined by the turbulent kinetic energy and the restitution power.
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The power πk
α describes the restitution of turbulent shear forces based on the

dissipation and structure of turbulence and reduces the turbulent diffusion.
This restitution power consists of the partial powers defined by four different

effects (see Table 1), which are described in the following subsections with the
indices β, p, c and d . The total turbulence loss rate εk

α is given by the sum of
individual loss rates (εk

γ , see Table 1):

εk
α =

∑
γ

εk
γ = εk

β + εk
d + εk

p + εk
c (14)

The different diffusion rates and turbulence loss rates are induced by the viscous
turbulent shear stress (πk

β, εk
β : Jones et al. [7]), crossing trajectory effects (πk

d , εk
d :

Csanady [3]), drag forces (πk
p, εk

p : Schiller and Naumann [12]) and collision terms

(πk
c , εk

c : Jenkins and Richman [9]). Adding together these influences, the new
restitution power term of the turbulent diffusion is modelled.

πk
α =

∑
γ

πk
γ = πk

β + πk
d + πk

p + πk
c (15)
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Figure 1: Normalised stream-wise particle mean velocity UD and normalised
standard deviation uD

mag of the particle velocity magnitude in the fully-
developed, particle-laden channel flow.

Simulating the general restitution power πk
α and energy loss εk

α the resulting
turbulence structure parameter Ck

α is computed in the following way:

πk
α = 2

3

kk

τ k
α

= εk
α(

Ck
α

)2 ⇒ Ck
α =

√
εk
α

πk
α

(16)

The turbulent time scale τ k
α depends on the sum of all diffusion rates:

τ k
α =

2
3kk

πk
β + πk

d + πk
p + πk

c

(17)

This way of calculation yields a deterministic method to compute the turbulent
time scale, which is needed for the calculation of the general turbulent viscosity of
both phases (eq.12).

4 Computational results and discussion

This model was validated using experimental data of 70 μm copper particles
in a fully-developed channel flow ([10]; experimental results). The results using
the present model (Eul./Eul. [2]) were also compared with the results obtained
by an Euler/Lagrange scheme (Eul./Eul.) [6, 8] and a well-known Euler/Eulerian
diffusion approach (Eul./Eul. [1]) [5, 11].

Gravity acts in the positive x-axis direction. The channel flow Reynolds number,
based on channel height (2 h = 40 mm) and single phase channel centreline
velocity (UC

0 = 10.5 m/s) is Re2h = 27600. The flow is regarded as fully
developed after 125 channel heights and at this position it is assumed that the
particle velocity and particle turbulence has reached an asymptotic state. The
copper particles have a density of ρD = 8800 kg/m3 and a diameter of Dp =
70 μm. The inlet mass loading of particles is ZD

0 = 10% and the parameter of
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Figure 2: Turbulent kinetic energy loss rate εk
α and turbulence restitution power πk

α

of the dispersed phase (D) and the continuous phase (C).

elasticity is eD
c = 0.90. The results obtained using the present method were also

compared with the computational results obtained by an Euler/Lagrange scheme
[8].

Comparing the present model (Eul./Eul. [2]) with a standard particle diffusion
model (Eul./Eul. [1]), the velocity and the standard deviation of the velocity
magnitude of the present model agree better with the Euler/Lagrangian results.
Because of the assumed isotropy of the present model, the standard deviation of
the stream-wise particle velocity does not agree as well with the predicted standard
deviation of the particle velocity magnitude.

The characteristic model values describing diffusion: the restitution power πk
α

and the turbulence structure parameter Ck
α are shown in Fig. 2. The dissipation

loss of the continuous phase and the restitution power of the dispersed phase
dominate over the respective values of the other phase. As expected the turbulence
structure parameter of the dispersed phase CD decreases near the wall, because
of the decreasing ratio

√
εD
α /πD

α against the nearly constant turbulence structure
parameter of the continuous phase CC

α . Comparing the positions of these restitution
maxima of the momentum diffusion with local minima of the turbulence structure
parameter CD

α (Fig. 2, right) near the wall the difference between the different
kinds of diffusion, with and without viscous turbulence dissipation, in dispersed
and continuous phase are shown.

Validating this new particle diffusion model a test case of Bohnet and Triesch [1]
has been chosen. Simulating a fluidised bed with a particle loading Z = 1 inside
a rising vertical diffuser flow. Glass particles are used approaching the dispersed
phase. The half-cone angle of the conic diffuser is 6◦ and the outlet/inlet diameter
ratio is D2/D1 = 1.45. The particle laden flow enters the diffuser part of the
channel after a distance, which is long enough to develop a fully turbulent flow.

Analysing the velocity profiles (Fig. 3) local loading, gas and particle velocities
are shown at entrance and exit of the diffuser. The gas phase inlet-boundary
condition is a velocity block profile of U0 = 26.0 m/s. The symmetry line is
at x = 0. Inside the diffuser the gas velocity decreases and is overtaken by the
particles. The particle velocity decreases during the relaxation process upside the
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Figure 3: Normalised radial profiles of axial gas velocity, particle velocity and
loading in comparison with experimental results.

diffuser. The particle loading has a similar maximum at the exit of the diffuser.
Also this maximum decrease during the homogenising diffusion process upside
the diffuser. The numerical data are compared with experimental data of Bohnet
and Triesch [1].

5 Conclusions

Using this kind of diffusion blending, simulations are able to give better results for
turbulent wall layers of the dispersed phase, including their turbulence production.
The prediction of turbulent particle diffusion is limited by the quality of modelling
of the momentum diffusion and the turbulence production of the dispersed phase.

Compared to classical equilibrium models, which solve an additional differ-
ential equation for the energy loss, coming up to the dissipation rate in viscous
systems, the energy loss of the dispersed phase is given by algebraic equations. The
turbulence structure parameter remains nearly constant in the dissipative systems
examined here. So the ratio of restitution and dissipation power of the involved
sub-models keeps also nearly constant.

For the not viscous, dispersed phase the turbulence structure parameter
decreases corresponding to the high restitution and the locally low momentum
diffusion inside the wall layer. This characteristic behaviour is based on the addi-
tional restitution power without the corresponding loss rate induced by crossing
trajectories effects. Basically the added modelling of the turbulence structure
parameter influences the production of particle velocity variance near the wall in
that kind that the gradients of the stream-wise particle velocity agree with the
measurement data.
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