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Abstract

Recently developed method, Mesoscopic Eulerian Formalism, is searched for its
extension to the gas-solid flows where the carrier phase is modified by the solid
phase. The possibility is shown to be existing by the introduction of two classes
of particles with all the same properties except their initial positions. Classes are
distributed homogeneously in space and only one of them is two-way coupled with
the flow. The others are with ghost particles (particles with one-way coupling).
With increased number of ghost particles, the field of source terms’ of classes
become similar letting the fluid realization become the same for each class. Then
the conditional one-particle probability density function is definable.
Keywords: Mesoscopic Eulerian Formalism, two-way coupling, particle and fluid
realization, initial particle conditions.

1 Introduction

Spatial distribution of inertial particles in a turbulent flow is very important in
understanding different phenomena occurring in gas-solid flows such as particle-
particle interactions, interactions fluid-particle, etc. For example, it is shown by
Sundaram and Collins [1] that particle spatial distributions can cause significant
changes in the collision rates of particles. On the other hand, particle distribution
can also have specific effect on the modulation of fluid turbulence, Elgobashi and
Truesdell [2].

In this regard, Fevrier et al. [3] have proposed the Mesoscopic Eulerian
Formalism (MEF) to have comprehensive understanding on the distribution of
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finite inertia particles in a turbulent flow. The particle spatial velocity correlations
are assumed to be induced only via the interactions with the fluid. Specifically,
hydrodynamic interactions and inter-particle collisions are assumed not to induce
any spatial correlation between the particles. This considers the fact that dispersed
phase statistical quantities do not depend on the initial conditions of particles hav-
ing chaotic motion. The statistical measures are developed then via the definition
of one-particle probability density function, f̃(1)

p (cp, x, t,Hf ), conditioned on the
single fluid realization.

The extension of the method to the gas-solid flows with inter-particle collisions
is proposed by Fevrier et al. [3] for dilute regimes. However, implementation in
turbulence modulation regimes is not that direct due to the fact that the single fluid
realization, Hf , is not obvious to be definable.

In this paper, it is shown that Mesoscopic Eulerian Formalism is applicable
through the introduction of two classes of particles into a turbulent flow where
only one of the classes is coupled with the flow (two-way coupling) and the other is
assumed to be ghost particles (particles with one-way coupling). Particles are point
sources tracked in the Lagrangian frame of reference whereas the fluid is solved
in the Eulerian grid. Particle Source In Cell approximation (PSIC), initialized
by Crowe et al. [4], is shown to be not to cause any significant non-physical
oscillations on the fluid velocity. Discussion will continue with describing the
numerical scheme and the application to two-way coupling will be discussed.

2 Governing equations and numerical configuration

The studied configuration is a cubical domain with a volume of L3
b = (2π)3. The

domain is discretized with 1283 grid points with periodic boundary conditions for
the both phases.

Homogeneous isotropic turbulence is generated and kept stationary using a
stochastic forcing scheme [5, 6]. The code used is finite difference code with 6th

order spectral-like scheme in space and 3rd order Runge-Kutta scheme in time.
The code is parallelized with MPI (Message Passing Interface) library.

Governing equations of the fluid including the effect of particles are written as:

∂ρ

∂x
+
∂ρui

∂xi
= 0 (1)

∂ρui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

+ Πi + fi (2)

Equations (1) and (2) are respectively for the conservation of mass and momen-
tum.

While solving the Navier-Stokes equations in the Eulerian frame, particles are
tracked individually in the Lagrangian frame. The effect of the particles on the fluid
is taken into account through the term, Πi, on the right hand side of the momentum
equation. Without taking into account the effect of gravity, this term in the context
of point-source approximation is written as:
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Πi = −
Np∑
n= 1

F
(n)
p,i (x(n)

p,i )δ(x− x
(n)
p,i ) (3)

where F (n)
p,i is the force applied by the fluid to the nth particle in i direction defined

as:

F
(n)
p,i = −m

(n)
p

τ
(n)
p

(u(n)
p,i − u

(n)
f@ p,i) (4)

where uf@ p is the fluid velocity at the position of particle and τp is the particle
relaxation time defined as:

τ(n)
p =

ρpd
2
p

18μffD
(5)

fD = (1 + 0.15Re0.687
p ) is the correction to take into account the effect of

particle Reynolds number, Rep. Fluid velocity at the position of particle, uf@ p,
is calculated by 3rd order Lagrangian interpolation scheme.

The term fi in the equation 2 is the stochastic forcing term which keeps the
turbulence stationary.

3 Initial conditions of particle phase

Characteristics of turbulence and particles can be found in table 1 and table 2.
TE is the Eulerian time scale calculated by the Eulerian one-point autocorrelation
function, Te is eddy turnover time defined as Lf/u

′
where Lf is the longitudinal

large scales length and u
′

is the characteristic velocity of turbulence. Lg is the
transversal large scales. TLf

is Lagrangian time scale of large structures calculated
by the Lagrangian one-point autocorrelation function. Based on these values,
turbulent Reynolds number is defined as ReL = u

′
Lf/νf and Reynolds number

based on the Taylor scales is defined as Reλ = u
′
λg/νf .

The crucial condition for MEF to be applicable is that the particle spatial
correlations are induced only by the interaction with the fluid. As mentioned
in introduction, this dictates the fact that the hydrodynamic interactions and
interparticle collisions are assumed not to induce any spatial correlation. To this
end, small deviations in the initial conditions are quickly magnified, after several
relaxation time, particle statistics become independent of the initial conditions and
controlled by the interactions with the fluid.

Under these assumptions, two populations of particles are introduced into the
same fluid realization with the same mesoscopic fields except their positions. The
characteristics of particles and of turbulence are defined in table 1 and table 2.
Note that in the table, total number of particles is given. Each populations is then
with 2 particles per grid inDNS1283 application. These two populations are time-
stepped with the fluid realization without two-way coupling so that they settle to
an equilibrium with the turbulent field. Their statistical quantities, particle kinetic
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Table 1: Turbulence characteristics without two-way coupling.

TE TE/Te TLf
/TE Lf/Lb Lf/Lg ηf ReL Reλ

6.2816 1.0267 0.8275 0.0864 1.9797 0.0177 96 49

Table 2: Particle characteristics.

ρp/ρf dp/ηf Nptotal

12000 0.0751 4x1283

Table 3: Fluid and particle statistics.

Population q2
p q2

f qfp q2
f@ p

ClassA .4544E-02 .1176E-01 .8883E-02 .1141E-01

ClassB .4546E-02 .1176E-01 .8883E-02 .1141E-01

energy q2
p, turbulent kinetic energy q2

f , fluid-particle covariance qfp, turbulent
kinetic energy seen by the particles q2

f@ p, in stationarity are shown in table 3 and
they’re exactly the same. This final field obtained is referred as T + /τp = 0 where
T + is the nondimensional time of the simulations. These populations will be useful
not only for the verification of the PSIC approximation but also for the test that is
performed to validate the MEF’s application to two-way coupling.

Initial distributions of the particles are shown in fig. 1. It is clear that the both
classes are distribution homogeneously in space.

To be more quantitative on the distributions of the both classes, the normalized
spatial distribution function, P (C), which is possible number of particles, C, in an
elementary volume and longitudinal spatial correlations of particles, Rpp(r) =<
up(x)up(x+ r) >, are plotted. Shown in fig. 2, both populations have exactly the
same correlation and distribution curves validating the equality of the mesoscopic
fields of both classes.

4 Validity of point source approximation

Once being sure of the initial conditions of the particle classes, a numerical study
has been performed to verify the point source approximation (PSIC). It is been
shown by Eaton [7] how the point source approximation fails with increase in the
particle radius. In this paper, particles smaller than the Kolmogorov scale are used
(see table 2) so the effect of wake production is negligible. Then all the rest is the
validation of the approximation.

 © 2009 WIT PressWIT Transactions on Engineering Sciences, Vol 63,
 www.witpress.com, ISSN 1743-3533 (on-line) 

150  Computational Methods in Multiphase Flow V



Figure 1: Spatial distribution of particles, T + /τp = 0. ClassA on the left and
ClassB on the right.

Figure 2: Spatial correlations,Rpp(r) normalized by particle phase kinetic energy,
q2
p, and distribution functions of particle classes, P (C), at T + /τp = 0.

Simple test is then applied to two-classes of particles introduced into the same
fluid realization. One of them is coupled with the fluid and the other is chosen as
the ghost particles (particles with one-way coupling) (see Vermorel et al. [8]). If
the approximation is to be valid, then the statistical values of each class should be
similar with a negligible difference between each other so that they see the same
fluid field.

As seen in fig. 3, the difference of the fluid-particle covariance, qfp, between the
two populations is less than 1% which is rather acceptable for the application.

5 Application of MEF to two-way coupling

As explained in introduction, for the MEF’s application to the flows where the
two-way coupling cannot be ignored, the definition of the probability density

 © 2009 WIT PressWIT Transactions on Engineering Sciences, Vol 63,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Computational Methods in Multiphase Flow V  151

Sunrise Settings Ltd
Line



Figure 3: The error of the PSIC approximation, qp
fp is particle-fluid covariance

for the particles effecting the flow and qg
fp is covariance for the ghost

particles.

function, f̃(1)
p (cp, x, t), is not direct forward preventing the definitions of statistical

quantities conditioned on a single realization of fluid turbulence.
Initially, the idea was to explore the effect of different initial conditions of

particles on the same fluid field, Hf . Performing number of two-way coupled
simulations with particles having different initial positions, it was observed how
the turbulence evolves with a response to different initial conditions. Specifically,
it was curious to find a time range where the fluid turbulence does not differ
between different fluid realizations enormously. To compare the fluid fields in
these different simulations, the proper method is the utilization of the normalized
parameter D:

D = (< (uA − uB)2 > /uArmsuBrms)
1/2 (6)

where uA is the fluid velocity with response to the ClassA and uB is the one to
ClassB where < . > denotes volume averaging.

Two simulations are performed with 2 classes of particles (see table 2). The
particle initial conditions are as explained in section 3. Fig. 4 shows the behavior
of D and the particle statistics in time. As seen in the figure, the flow fields
differentiate more than 10% and significantly the difference increase in time
whereas the statistical quantities are the same for each class (the figure on the
right hand side).

This difference in instantaneous fluid field is due to the small deviations in the
feedback of particles which are quickly amplified in time by the non-linear chaotic
nature of turbulence. The conclusion is then the turbulent field does not allow a
fluid realization rest the same at least for a small time-range when it is coupled
with the particle phase.

To come over the non-linear nature of turbulence, the simulation resumed in
the first test is considered with only one class being active (two-way coupled
to the fluid) and the other class is considered as ghost particles (particles with
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Figure 4: Parameter D, the difference between the fluid realizations and statistics
of the two classes, ClassA and ClassB.

Figure 5: Spatial correlations,Rpp(r) normalized by particle phase kinetic energy,
q2
p, and distribution functions of particle classes, P (C), at T + /τp = 8.

one-way coupling). In the same fluid realization, difference between the source
terms of classes are then expected to be dependent on the number of particles,
at least for a time range. Two simulations are performed with the configuration
where ClassA and ClassB are the ones active in respective simulations to see
the interchangability of the active class. As might be guessed, different classes
correspond to different initial conditions and the fundamentality here is then the
ghost particles’ utility which is to increase the precision of the computation of the
mesoscopic quantities using the p.d.f. f̃(1)

p .
As seen in fig. 5, at the end of the simulation, spatial distributions and

correlations of the two classes rest the same to each other, shown only for one
simulation. This is to say that even with two-way coupling, particle field keeps the
mesoscopic field, as in the initial conditions, the same for both classes.

However, the effect on the fluid field is not the same when the active class is A
orB. Turbulent field responding to ClassA andClassB in respective simulations
is shown in fig. 6. It is clear that the topology of the flow stays the same. However,
analyzing closer the field, the dashed-line regions are shown in fig. 7. The dots in
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Figure 6: Fluid velocity vectors, T + /τp = 8, on the left hand side, ClassA is
active, on the right hand side, ClassB is active in seperate realizations.

Figure 7: Fluid velocity vector zoom field, the dashed-line regions in fig. 6.

the fields shows the approximative centers of the vortexes and as seen, they have
slight deviations between each other.

The source terms of active and non-active classes in one of the simulations are
shown in fig. 8. As seen in the figure, the difference quantified by the parameter
D in time stays constant for a time range more than one particle relaxation time.
The initial peak on the graph is due to the transition of both the particles and fluid
field to arrive at a new equilibrium, it is to be reminded that turbulence is forced by
the scheme of Eswaran and Pope [5]. In the stationary period, constant difference
seems like promising and more strictly, it has been found out that the difference
depends on the number of ghost particles, not shown here. As the number of
particles in each class, one-way or two-way, increases the parameter D decreases.

So there is a statistical relation between the number of particles and the differ-
ence of the source terms among the classes. This sounds a bit like the statistical
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Figure 8: Source term Πx, eq. (3), of particles in x direction at T + /τp = 8, of
ClassA (active) on the left and of ClassB (non-active) on the right in
the same fluid realization.

Figure 9: ParameterD, difference between the source terms of particles inClassA
and ClassB for the two realizations of fluid.

confirmation of PSIC method. Using high number of particles lets the changing
the active class to any other classes to generate the same fluid field. The definition
of the conditional probability density function, f̃(1)

p (cp, x, t,Hf ), is then possible.

6 Conclusion and perspectives

The Mesoscopic Eulerian Formalism is shown to be applicable to the flows
where the carrier phase is modified by the presence of solid particle phase. From
statistical point of view, increasing the number of particles reduces the error of
the PSIC approximation where non-physical oscillations are not obtained and
also high number of particles lets the definition of a single fluid realization,
Hf , in which large number of particle realizations, Hp, is imaginable. Study can

 © 2009 WIT PressWIT Transactions on Engineering Sciences, Vol 63,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Computational Methods in Multiphase Flow V  155



be extended to different Stokes numbers to see the difference when there is no
concentration of particles. Also classes with different numbers of particles should
be very informative on the effects of initial conditions. With the definition of the
probability density function of particles conditioned on a single fluid realization,
mesoscopic field values become measurable.
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