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Department of Numerical Methods in Mechanical Engineering,
Technische Universität Darmstadt, Germany

Abstract

This paper deals with the numerical modelling of multiphase flows with phase
transition during solidification of binary alloys. First, verification of the effective
viscosity assumption in the regime of moving solid (equiaxed crystals) and liquid
(melt) for large solid mass fractions is presented. In order to extend the effective
viscosity model to the region of stationary solid (columnar crystals); non-linear
dependence of the viscosity on the solid mass fraction and the shear velocity is
introduced based on the experimental evidence. The proposed formulation is used
in a numerical study of the metal alloy solidification in a rectangular cavity.
Keywords: multiphase flow, solidification, mushy zone, phase change.

1 Introduction

During solidification of binary fluids, e.g. metal alloy Al–Si, Al–Cu, for a certain
range of temperatures and compositions a mushy zone is created (cf. Refs. [1, 2]).
The influence of the mushy zone morphology on the flow field can be modelled by
two approaches: porous media model, where the Carman-Kozeny relation couples
local porosity of the medium with the local liquid fraction, or direct modification
of the local fluid viscosity relatively to the local solid fraction, see e.g. Refs. [3,4],
respectively. These two physical models are valid in different regions of the mushy
layer: the region of stationary, columnar crystals where the solid velocity is �us = 0
and the region of the equiaxed crystals where the velocity of solid is assumed to
be equal to the velocity of the melt �us = �ul , see Fig. 1. The difficulties in the
modelling of the mushy zone by a one-field model arise during the transition from
the mixture velocity (for fluid and solid) to the interstitial velocity in the porous
zone, see Refs. [5, 6].

 © 2009 WIT PressWIT Transactions on Engineering Sciences, Vol 63,
 www.witpress.com, ISSN 1743-3533 (on-line) 
doi:10.2495/MPF090051

Computational Methods in Multiphase Flow V  55



Figure 1: Schematic presentation of the mushy zone with two characteristic
regions: columnar dendrites �us = 0 and advected equiaxed crystals
�us ≈ �ul .

The disadvantage of the first method is the necessity of the permeability
coefficient estimation by experimental or theoretical investigations. This issue is
not straightforward because the mushy zone has a complex morphology dependent
on the material and external conditions. A porous media model should be used only
in the region where the solid phase is stationary.

In the case of the second approach, an assumption about the continuous change
of the material properties across the solid, the mushy layer and the liquid is used. A
common approach employs a lever rule to approximate density and viscosity in the
mushy zone together with a linear dependence of the solid fraction on temperature
inherited from the linearised phase change diagram, see Fig. 2 and Refs. [5, 6].
The linear dependence of solid and liquid viscosities based on the lever rule is not
appropriate since the solid viscosity μs can not be defined. An alternative for the
linear viscosity approximation was given in Ref. [7], however, it does not take into
account the dependence of the viscosity on the shear velocity.

In this paper, based on the experimental evidence from Ref. [8] and the
parametrisation study from Ref. [9], we postulate an alternative non-linear depen-
dence of the viscosity on the solid fraction and the shear velocity. The viscosity
values used for partial validation of the model were obtained during measurements
in a cylindrical rheometer, see Ref. [8]. In section 3 experimentally obtained data,
i.e. viscosities as a function of solid fraction and the shear velocity, were used
to confirm the possibility of a modelling of multiphase systems by the effective
viscosity model.

Numerical simulations presented in this paper were carried out with the com-
mercial software Star-CD where the user coding was used for implementation of
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the physical models. The proposed viscosity data parametrisation is tested in the
case of the binary alloy solidification in a rectangular cavity, see Ref. [3].

2 Description of the solidification model

A solidification model implemented in the Star-CD (ver. 4.06) commercial soft-
ware is employed. The description of the model is given in supplementary notes
distributed together with the program, for this reason here only a short comparison
of the model used and other models presented in the literature, see Refs. [1, 3, 5],
is given.

The set of the conservation equations that describe the mixture medium is
obtained by the volume averaging under additional assumptions: equal solid/liquid
velocity �us = �ul , equal solid/liquid density ρs = ρl = ρ and the mechanical
equilibrium ps = pl = p. The set of conservation equations consists of: the
momentum, the continuity, the energy and the species mass fraction transport
equations:
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One can notice that the mathematical model in the Star-CD allows for simulation
of the material compressibility, therefore, modelling of the shrinkage effects is
possible. In the mushy zone the variables and the material properties in the above
equations represent quantities obtained by volume averaging (see Ref. [5, 6]).
Hence, the velocity ui , the density ρ, the viscosity μ, the enthalpy h, the thermal
conductivity k, the species mass fraction C and the species diffusion coefficient
D represent mass averaged quantities of the solidified alloy (solid) and the melt
(fluid) mixture:

φ = Csφ + Clφ, (5)

where Cs = ρscs/ρ and Cl = ρlcl/ρ are solid and liquid mass fractions, cs and
cl denote solid and liquid volume fractions and φ represents the aforementioned
variables and the material properties of the mixture. The local thermodynamic
equilibrium assumption allows to define the temperature T as the equilibrium
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a) b)

Figure 2: The phase change diagram a) typical for binary fluids of α + β com-
position, b) approximation of the phase diagram currently used in the
Star-CD valid for the constant melt composition.

temperature. Therefore the buoyancy effects can be approximated using the
Boussinesq assumption, see Eq. (1). The enthalpy in the solid, liquid and mushy
zone are calculated as follows, see Fig. 2b:

hs =
{

cpsT : T ≤ Ts

cpsTs : Ts < T < Tl

, (6)

hl =
{

cplT + (cps − cpl)Tm + L : T ≥ Tl

cplTl + (cps − cpl)Tm + L : Ts < T < Tl

, (7)

where L is the latent heat of fusion, cpl, cps are specific heats of the liquid and
solid, respectively, and Tm = (Ts + Tl)/2 where Ts , Tl are solidus and liquidus
temperatures.

The Star-CD code uses a simplified phase change diagram where the enthalpy
is calculated for constant (initial) composition of the binary fluid, see Fig. 2b. This
kind of simplification is the source of the main difference between solidification
model known in literature and the procedure applied in Star-CD. The equation
used for the determination of the liquid volume fraction cl is deduced from the
simplified phase change diagram, cf. Fig. 2b:

cl = T − Ts

Tl − Ts

, cs = 1 − cl, (8)

where solidus Ts and liquidus Tl temperatures are constant and must be supplied
by the user, whereas the calculation of the liquid mass fractions from the phase
change diagram in Fig. 2a requires information about the local composition C
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since it influences its solidus and liquidus temperatures, see Refs. [5, 10]:

Cl = C − Cα
s

Cα
l − Cα

s

, Cl = ρlcl

ρ
. (9)

The approximation in Star-CD is based on the assumption that the composition
of the binary fluid remains constant. The main consequence of this simplification
is a direct dependence of the liquid volume fraction distribution on the temperature
since Ts , Tl are set constant in Eq. (8). Hence, one can expect that according to Eq.
(8), the cl distribution must follow isotherms. Thus, modelling of the real shape
of the solidification front is largely an approximation. One can also notice another
implication of the simplified model. The conservation equation (4) is no more a
species mass conservation equation but only a solid and liquid mass conservation
equation since the composition of the binary liquid is constant.

3 Verification of the effective viscosity model Cs ≤ 0.45

To verify the hypothesis about the applicability of the effective viscosity model
in the case of large solid fractions, experimental data obtained from viscosity
measurements of a Al−Si metal alloy carried out in Ref. [8] were used. During the
experiment, a cylindrical rheometer was placed in an electrical thermostat allowing
to sustain constant temperature around it. Measurements of the torque M on the
grooved rod rotating inside the cylinder allowed to calculate value of the tension
acting at the surface of the rod, see Eq. (10). The number of the revolutions per
minute n was used to calculate the shear velocity γ , cf. Eq. (11). The ratio of the
tension τ and the shear velocity γ gives the viscosity of the multiphase fluid, see
Eq. (12):
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(
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i CL
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M, (10)
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1 + δ2

δ2 − 1

π

30

)
n, (11)

μ = τ

γ
, (12)

where δ = Ra/Ri is the ratio of the cylinder radius Ra and the rod radius Ri . It
is important to notice that Eqs. (10–12) are valid only under the assumption of a
linear velocity profile between the external cylinder surface and the rotating rod,
i.e. a Couette flow assumption.

Since the whole cylindrical rheometer was placed inside of the thermostat, it
was possible to assume that the temperature and thus the solid mass fraction
are constant during the simulation. This simplification allows to employ only
the momentum and continuity equations, see Eqs. (1–2) respectively, where all
variables and material properties are defined for the multiphase mixture. The
isothermal assumption allow for relatively straightforward simulation of this
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multiphase flow. The single simulation point in Fig. 4 (left) corresponds to the
single viscosity measurement for given shear velocity γ see Eq. (11). Experimental
data for two temperatures 594◦C, 605◦C were used, density ρ = 2700 kg/m3 was
assumed constant during all simulations. After the convergence criterion for the
torque calculated on the grooved rod is obtained (variation of the z-component
of the total torque was monitored) the new values of the tension, see Eq. (10)
and then viscosity, see Eq. (12), are calculated and compared with experimental
findings, see Fig. 4. Obtained results show that when using exact experimental
data, the flow in the multiphase system is accurately modelled with the effective
viscosity assumption. The difference between the experimental value and the
numerical solution ε = 1 − μcf d/μexp can be defined due to the knowledge about
the measured viscosities μexp . One can notice that the value of ε grows with
increasing shear velocity γ , see Fig. 4 (left). In the case of the solid mass fraction
Cs ≈ 45%, the error ε starts to grow from the value ε = 3.9%, γ ≈ 490 1/s

until ε ≈ 22% for γ ≈ 520 1/s the last computational point in Fig. 4 (left,
top). For the solid mass fraction Cs = 33% the error ε grows from ε ≈ 3.9%,
γ ≈ 500 1/s until the solution with the experimentally obtained viscosities does
no more follow the experimental data, i.e., ε ≈ 44%, γ ≈ 600 1/s. The source
of the error variation has a twofold nature. First of all, in the case of large solid
fractions, for larger shear velocities γ the non-slip condition at the wall of the
cylindrical rheometer and the wall of the grooved rod (rod is grooved to avoid slip
effect) can be no more satisfied. Secondly, the important factor that limits the range
of the measurements in the cylindrical rheometer is the development of the Taylor
instability. This phenomenon occurs for large values of the revolutions per minute

a) b)

Figure 3: The cylindrical rheometer a) characteristic dimensions of the grooved
rod and the cylinder Ra = 13 mm, Ri = 10 mm, b) cross section through
the numerical model build from about 8 × 105 CV’s.
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Figure 4: The viscosity obtained from simulations in the cylindrical rheometer
compared with experimental data (left) and velocity magnitude for the
last computational point (right) in the case of the two solid mass fractions
Cs = 45% (top), Cs = 33% (bottom). In the case of smaller solid mass
fraction Cs = 33% vortices developed due to the Taylor instability are
visible.

n and prevents accurate viscosity measurements since the Couette flow assumption
is no more satisfied, see Fig. 4. The accurate prediction of this effect in multiphase
systems is difficult, since it is directly connected with the variable viscosity of the
mixture fluid. The numerical modelling of the flow in the cylindrical rheometer
should be further investigated since it might become a valuable verification tool
for the experimental investigations.

4 Extension of the viscosity model for Cs > 0.45

The key problem during modelling of the mushy zone by the effective viscosity
model is the extension of this assumption for large solid fractions Cs > 0.45
since in this case viscosity measurements in the rheometer are not possible. In fact,

 © 2009 WIT PressWIT Transactions on Engineering Sciences, Vol 63,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Computational Methods in Multiphase Flow V  61



α = 0.999

α = 0.987

α = 0.95

Figure 5: Two parametrisations of the effective viscosity: error function erf and
piecewise functional pwf viscosity parametrisations. In the case of the
erf parametrisation three different α values were used 0.95, 0.987, 0.999,
coefficients β = 1e − 4, γ = 9.81 are the same for all three cases. The
second pwf parametrisation uses μl = 1 Pa · s, μs = 9e + 4 Pa · s

and Cs,cr = 0.6. Notice that the relative viscosity erf parametrisation
μr = μ/μl is almost independent of the α value when Cs ≤ 0.5.

viscosity of the solid μs can be considered only as an auxiliary parameter that does
not possess physical meaning. For this reason the commonly used approximation:

μ = Csμs + (1 − Cs)μl, (13)

where μl is the liquid viscosity, is not valid since μs can be an arbitrarily large
number. Alternatives for this approach are rarely presented in the literature, two
examples given in Refs. [4, 9] will be shortly discussed below.

In the case of the first parametrisation, the mixture viscosity μ is approximated
by a piecewise functional approach, cf. Fig. 5:

μ (Cs) =

⎧⎪⎨
⎪⎩

μle
4.5Cs : Cs ≤ Cs,cr

b1Cs + b2 : Cs,cr + 0.1 > Cs > Cs,cr

(1 − Cs)μl + Csμs : Cs ≥ Cs,cr + 0.1

(14)

where Cs,cr (here after Ref. [4] Cs,cr = 0.6) is the critical solid fraction value that
defines the highly viscous zone interpreted as the columnar crystals region, see
Fig. 1; b1 and b2 are two constants determined by the solution of the two equation
system in point Cs,cr , Cs,cr + 0.1. One needs to notice that Eq. (14) employs also
the linear dependence given by equation Eq. (13). The main disadvantage of this
approach is its discontinuity, cf. Fig. 5, and its lack of physical justification.
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The second effective viscosity parametrisation uses error function to approxi-
mate variation of the effective viscosity μ (Cs):

μ (Cs) = μl

{
1 − α · erf

(√
π

2
Cs

[
1 + β

(1 − Cs)
γ

])}−B/α

(15)

where α, β, γ are parameters to set, B = 2.5, cf. Ref. [9]. The second approach is
non-linear and the error function is known to be a solution of the heat transport
equation, when the initial condition is given by the Heaviside function. In the
case of solidification in the mushy zone, the aforementioned condition can be
interpreted as the jump of the enthalpy caused by the latent heat rejected from the
solid to the liquid phase, cf. Fig. 2b. Since the solid fraction variation across the
mushy zone is expressed by this function, see Ref. [1], and the effective viscosity
depends on the solid fraction, it should also be possible to express it in terms of
the error function.

4.1 Dependence on the shear velocity γ

To obtain a formula for the effective viscosity μ as a function of the solid fraction
Cs and the shear velocity γ , additional normalised variables are introduced: the
normalised viscosity μr = μ/μl and the normalised shear velocity γr = γ /γC .
The values of μl , μs and γC were set to 0.02 Pa · s, 500 Pa · s and 1000 1/s,
respectively, based on the available experimental data for five temperatures T :
594◦C, 600◦C, 605◦C, 610◦C, 615◦C and corresponding solid fractions Cs : 0.45,
0.39, 0.33, 0.25, 0.17, see Fig. 6. First, fitting of the continuous functions to the
normalised viscosities μr(γr) obtained for each solid fraction was carried out, in
order to obtain μr(γr , Cs = const.). Afterwards, the obtained functions were used
to calculate formula for the B coefficient. The remaining coefficients α = 0.988,
β = 1e − 4, γ = 9.66 were set only once and are constant in the whole domain.
The new, effective viscosity parametrisation μr(Cs, γr ) is given by the following
equations:

μr (Cs, γr ) =
{

1 − α · erf

(√
π

2
Cs

[
1 + β

(1 − Cs)
γ

])}−B(γr )/α

, (16)

B = γ̇ −0.52 + 1.1. (17)
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Figure 6: Comparison of the two effective viscosity parametrisations a) linear
viscosity see Eq. (13), b) non-linear viscosity cf. Eqs. (16–17).

In Fig. 6 the proposed viscosity parametrisation is compared with experimental
data and the old parametrisation given by Eq. (13). One can notice that the chosen
approach allows for relatively accurate approximation of the experimental data
unlike the original linear approach given by Eq. (13) that over-predicts viscosity
values for Cs ≤ 0.5.

Trun = 66s T ◦C cl

Trun = 36s T ◦C cl

659650.6

654.8

0.990.85

0.92

Trun = 22s
659

650.3

654.8

0.99

0.85

0.92

T ◦C cl

Figure 7: Comparison of the isotherms (left) and the liquid volume fraction
isolines (right) in the case of solidification in the rectangular cavity. The
two top figures come from the Ref. [3] at Trun = 66 s, the two figures
in the middle present the Star-CD result with the linear viscosity model
at Trun = 36 s and the two bottom figures depict the Star-CD solution
obtained with the proposed effective viscosity model at Trun = 22 s.
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5 Solidification of the metal alloy in the rectangular cavity

In order to access the properties of the proposed effective viscosity parametrisation
solidification of an Al–Cu alloy (μl = 0.003 Pa · s, Ts =548◦C, Tl =660◦C and
ρ = 2525 kg/m3) in a rectangular cavity (20 mm × 67 mm) is chosen. A detailed
description of the test case is given in Ref. [3].

In order to implement the viscosity model given by Eqs. (16–17) an approxi-
mation of the error function by elementary function is used (see Ref. [11]) since
erf() is not supplied by the compiler intrinsic functions library. The relative shear
velocity γr is approximated by the second invariant of the strain rate tensor that
can be considered as the mean shear rate.

Initially, the binary alloy has constant temperature Ti =660◦C in the whole
cavity. The convective boundary condition q = −hconv (T − Tamb) (hconv =
1 kW/(m2◦C), Tamb =20◦C and T is temperature in the domain) causes a drop
of the temperature close to the left side of the cavity and initialise solidification
process. The obtained results in Fig. 7 are compared for different run times Trun

because it was noticed that due to the Courant number restriction a restart is
required with a ten times smaller time step (�t = 1e − 5 s). Despite this fact
it is possible to compare the main features of the reference solution and the
obtained results. From Fig. 7 it is clear that the over prediction of the viscosity
by the first model, see also Fig. 6, is responsible for the lack of deformation in
the mushy zone visible in the case of the new viscosity parametrisation given by
Eqs. (16–17). The temperature distribution and the isotherms obtained with the
new parametrisation are closer to the reference solution. As mentioned before, in
the case of the solidification model used in Star-CD the front of the solidification
always follows isotherms unlike in the reference solution. Moreover, because the
first order upwind scheme is the only available discretization for the convective
term in Eq. (4), smearing due to the numerical diffusion influences the front
of solidification in Fig. 7. Finally, the magnitude of the velocity generated by
buoyancy effects is closer to the reference solution in the case of the non-linear
viscosity model, however, final quantitative comparison can only be performed
when the final result is obtained.

6 Conclusions

The paper concerns the binary alloy solidification with the effective viscosity
model. It was shown that the effective viscosity assumption can be used in the
modelling of the multiphase flow when the solid mass fraction Cs ≤ 0.45 showing
good agreement with experimental evidence from cylindrical rheometer. More-
over, the influence of the Taylor instability on the measurements in the cylindrical
rheometer was emphasised. The proposed viscosity parametrisation covers more
accurately the distribution of the experimental data and gives a realistic solution.
Further work on this subject should be devoted to the determination of reliable
verification test case based on the experimental evidence.
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