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Abstract

An experimental study is performed in order to describe the single- and two-
phase (air-water) horizontal flow in the presence of pipe expansion and contraction.
Three types of singularities are investigated; smooth convergence and sudden and
progressive enlargement. The opening angles for progressive singularities are 5, 8,
9 and 15 degrees. The surface area ratios tested are σ = 0.43, 0.64, 0.65 and 1.56.
Bubbly flow is the dominant flow regime that is investigated for volumetric quality
up to 30%. The pressure distribution for both single and two-phase horizontal
flow is examined versus axial position. For expansion geometries, it is found that
the smaller the enlargement angle, the larger the recovery pressure for the same
flow conditions; the pressure drop caused by the singularity is higher in the case
of a sharper expansion. The comparison of the experimental results to published
models leads to a proposed corrective coefficient for Jannsen’s correlation. Flow
visualization is also performed; the flow patterns downstream from the different
singularities are identified in each configuration and plotted in Baker’s map for
horizontal flow.
Keywords: two-phase flow, singularity, sudden expansion, contraction, pressure
drop, bubbly flow, flow visualization.

1 Introduction

Two-phase flow can be frequently met in nuclear, chemical or mechanical engi-
neering where gas-liquid reactors, boilers, condensers, evaporators and combus-
tion systems are often used. The presence of geometrical singularities in pipes
may significantly affect the behaviour of two-phase flow and subsequently the
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resulting pressure drop. Therefore, it is an important subject of investigation in
particular when the application concerns industrial safety valves. The studies of
two-phase flow in straight pipes existing in the literature are numerous. However,
investigations of two-phase flow in divergence, convergence, bends and other types
of singularities are rather sparse. The aim of studying these geometries is to find
how these geometrical accidents influence the two-phase flow pattern and pressure
distribution. In particular, the understanding of the flow in such basic geometries
can lead to a better design of safety systems.

Some of the authors that have analyzed two-phase flow in expansion geometries
are Jannsen and Kervinen [1], McGee [2], Chisholm [3], Chisholm [4] and Lottes
[5]. Correlations for estimating the pressure change in two-phase flow in this
type of piping geometry are reported by these authors. These correlations can
be extracted from the conservation equations applied downstream of the sudden
expansion. The equations used take into account different parameters of the
geometry and the flow such as surface area ratio σ , mass quality x and mass
velocity G. More recently, Aloui and Souhar [6], Aloui et al. [7], Schmidt and
Friedel [8], Hwang and Pal [9], et al. Ahmed et al. [10] and Ahmed et al. [11]
have evaluated the pressure change in a sudden expansion duct. Moreover, some
of them (Aloui and Souhar [6]; Ahmed et al. [10]) have measured the bubble
velocities and local void fraction to characterize the flow regime downstream
from the singularity. The lack of studies in progressive enlargements in two-phase
flow in the literature makes such an investigation more appealing. In this paper,
progressive contraction and divergence geometry of different opening angles is
considered. The latter is compared to the case of sudden expansion. The two fluids
are air and water in isothermal conditions. The volumetric quality of the air varies
from 0–30% and bubbly flow is the dominant regime. Four surface area ratios,
σ = 0.43, 0.64, 0.65 and 1.56, are tested. The opening angles for the case of
progressive singularities are 5, 8, 9 and 15 degrees. The Reynolds number Re

of the liquid ranges from 8 · 104 to 23 · 104. The determination of the recovery
pressure for each of the aforementioned geometries is one of the main objectives
of this investigation.
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Figure 1: A) Progressive expansion of different opening angles-reattachment
length L/d. B) Sudden expansion-reattachment length L/d.
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In Figure 1, the two different types of expansion geometries tested in this paper
are presented. Figure 1A shows the divergent pipe with the opening angle α and
Figure 1B the sudden expansion. The normalized reattachment length L/d, noticed
in Figure 1, denotes the eventual recirculation zone. In the case of convergence
geometry, a contraction region can be observed; a vena contracta is formed in the
pipe downstream from the singularity.

2 Experimental facility and conditions

2.1 Experimental facility

A schematic of the horizontal air-water flow facility used for the present study is
shown in Figure 2. A centrifugal pump (1) with a maximum flow rate of 65 m3/h is
sucking water from a reservoir and is controlled with a frequency inverter. During
the experiments, an air release valve (11) connected to the tank is kept continuously
open to the atmosphere to avoid bubbles entering the circuit. A by pass valve (12)
is used to prevent facility from the water hammer phenomenon. A temperature
sensor is placed in the reservoir to monitor the temperature for each measurement.
Two electronic flow meters are used to measure the water flow rate (2 and 3); their
maximum capacity is 12 m3/h (3) and 32 m3/h (2), respectively. In the case of
the desired maximum flow rate, which is 40 m3/h, the two flow meters are used
in series. A bourdon tube pressure gauge (4) is placed upstream in the pipe to
obtain the wall static pressure relative to the atmosphere. This indication helped to
prevent excessive pressure that could lead to a breaking of the test section (made in
Polymethyl Methacrylate, PMMA). Moreover, the pressure has to be high enough
to allow the necessary purging of the pressure transducers. Therefore, the pressure
is held constant at around 200 kPa. The setup has an upstream calming section (5)
consisting of a stainless steel pipe length of 50 diameters (50d). This ensures a fully
developed flow after the bend. Close to the test section, the injection of the air is
performed through a gas injector (6) as indicated in Figure 2. A regulation valve (7)

1   Pump

2   Big electronic water flow meter

3   Small electronic water flow meter

4   Bourdon tube pressure gauge

5   Calming length

6   Air injector

7   Regulation valve

8   Electronic air mass flow meter

9   Heat exchanger

10 Pressure regulation valve

11 Air release valve

12 By pass valve

T  Temperature measurement 

Water tank

Test section

Inverter
T

PP

Water discharge

Compressed air

1111

1212

Figure 2: Schematic of the experimental facility.
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controls the air that is supplied from a compressor. The air flow rate is measured
by an electronic mass flow meter (8). The design and the positioning of the air
injection devices are such that uniform bubbly flow is produced at the inlet of the
test section. It is found that the most suitable distance for the air injection is 20 pipe
diameters upstream from the singularity. After the test section, a heat exchanger
(9) is placed for maintaining the temperature constant at around 21◦C during the
experiments. A draining valve is also located at the bottom of the reservoir. Finally,
a pressure regulation valve (10) controls the pressure of the system.

A detailed view of the test section is presented in Figures 3, 4 and 5. The case of
a DN 40/65 (σ=0.43) divergent section with an opening angle of 8◦ is exemplified.
At each section of measurement, four pressure taps are placed with an angle of
45◦ between them as shown in Figure 3. Thus, any three dimensionality of the flow
could be identified from pressure measurement. The four taps are named as A, B, C
and D according to Figure 3. Figure 4 depicts an overview of the test section. The
setup is built in PMMA to allow optical access. Pressure taps are placed along the
tube in several points as is shown in Figure 5. The distance between pressure holes
is normally equal to one tube diameter but becomes smaller when approaching the
singularity. The pressure taps are also more dense inside and downstream from
the singularity. This allows better tracking of the flow behaviour in the singularity.

Aluminum table

4 pressure taps 

(45° angle between them)

Aluminum table

4 pressure taps 

(45° angle between them)

A B

CD

Figure 3: Pressure taps placed in four
different points of the tube
with 45 ◦ between them.

Figure 4: Overview of the test section.

Figure 5: Detailed view of the test section with the pressure taps and their position.
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Table 1: Different test cases studied.

Singularity d1 [m] D2 [m] σ [-] Ls [m] Ls/d1 Angle α [◦]
Smooth contraction 0.04 0.032 1.56 0.025 0.63 9

Divergence 0.032 0.04 0.64 0.025 0.78 9
Divergence 0.041 0.0627 0.43 0.041 1 15
Divergence 0.041 0.0627 0.43 0.07503 1.83 8
Divergence 0.041 0.0627 0.43 0.1238 3 5
Divergence 0.0627 0.078 0.65 0.0529 0.8 8

Sudden expansion 0.041 0.0627 0.43 - - 90
Sudden expansion 0.0627 0.078 0.65 - - 90

Table 2: Upstream conditions for pressure measurements and flow visualization.

d1[m] Fluid Q̄ [l/s] J [m/s] β [%] Ḡ [kg/m2s] ReL1·104 Flow regime

0.032

Water 2 2.5

1-40

2500 9 Laminar Min
Water 4.7 5.8 5850 20 Turbulent Max

Air 0.017 0.02 0.03 0.005 Laminar Min
Air 1.8 2.2 2.61 0.46 Turbulent Max

0.041

Water 2.3 1.8

5-30

1750 8 Turbulent Min
Water 7 5.4 5300 23 Turbulent Max

Air 0.4 0.3 0.38 0.09 Laminar Min
Air 2.8 2.2 2.73 0.58 Turbulent Max

0.0627

Water 6 1.9

5-25

1950 13 Turbulent Min
Water 10.5 3.4 3400 23.5 Turbulent Max

Air 0.4 0.1 0.15 0.05 Laminar Min
Air 3.4 1.1 1.29 0.45 Turbulent Max

Pressure distribution is measured upstream and downstream from the divergence.
The test matrix is summarized in Table 1.

2.2 Flow conditions and measurement devices

The flow conditions of the experimental campaigns are listed in Table 2. Table 2
presents the test conditions for the pressure measurements and for flow visual-
ization. It should be pointed out that the ReL1 number of the liquid is based on
the upstream pipe diameter d. For the comparison between single and two-phase
flow, ReL1 is kept constant. This is obtained by adjusting the water flow rate when
increasing the air to reach a higher volumetric quality β. Consequently, we can
assume that the total mass flux is constant, since the mass of the air compared
to that of water is negligible. Differential pressure transducers of the Rosemount
type are used. The uncertainty associated with the pressure transducers varies from
a minimum of 0.35% to a maximum of 0.75%, depending on the range of the
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measurement (100-20% of the scale of the range respectively). To obtain the best
accuracy possible, four different pressure transducers are selected:

1. Calibrated at 0–1.6 kPa
2. Calibrated at 0–4 kPa
3. Calibrated at 0–8 kPa
4. Calibrated at 0–16 kPa

Every transducer is used in a range that gives the best accuracy in all the
conditions covered. Prior to the measurements, predictions of regular pressure
drop are performed by means of Blasius and Colebrook-White formulas for
single-phase and Lockhart and Martinelli [12] for two-phase flow. Thus, this �P
estimation allows the selection of the appropriate pressure transducers for each
test. Additionally, for the prediction of the singular pressure change in single-
phase, the coefficients given by Idel’cik [13] are used. The uncertainty related
to the flow rate measurements varies from a minimum of 0.5% to a maximum of
1.10%. The temperature variation during the experiments is of the order of ±4◦C
with an average value of 21◦C. Although a heat exchanger is used for reducing
this variation, a small fluctuation of the temperature could not be avoided. A
variation of ±5◦C will change ρ and ν by 0.1% and 11% respectively. Therefore, a
correction of the liquid density and viscosity is performed. The sampling frequency
of the measurements is fsampling = 2 Hz and the acquisition time for each
measurement point is tacq. = 1 minute with the aim of assuring a more accurate
average. In some cases (for sudden and progressive enlargement of σ = 0.65), a
higher fluctuation of the signal is observed; in this occurrence an acquisition time
of 2 minutes is chosen.

3 Results and discussion

3.1 Pressure measurements

One of the main objectives of the study is the determination of the pressure
distribution through the different singularities. Figure 6 indicates how the mea-
surements are performed and how the singular single and two-phase pressure
change is determined (the case of divergence is chosen). As the graph of Figure
6 shows, following a normal decrease upstream from the geometrical accident,
the pressure will increase to a maximum value inside the divergent section and
will start decreasing after a certain length in a regular way. We can split the
whole phenomenon into three regions; the upstream fully developed flow, the
transitional region with a recirculation zone and the downstream fully developed
flow. The length of the transitional region varies with ReL1, σ , and the type of
the singularity. In all the tests, the measurement of the regular and singular static
pressure changes refers to the pressure measured at ≈ 10d upstream from the
singularity (Figure 6). The singular pressure change �P can be finally determined
by extrapolating the regular static pressure drop from the start of the singularity
to the reattachment point. Since the points downstream from the singularity
are not enough to obtain fully established flow, the regular pressure drop is
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Figure 6: Explanation of the way to determine the singular pressure change in
expansion geometry.

calculated by means of the Blasius and Colebrook-White formulas for single-
phase and the model of Lockhart and Martinelli [12] for two-phase. The final
singular pressure change is calculated by a simple summation of these three terms
(|�Pregular-measured|+|�Psingular-measured|+|�Pregular-calculated|). The reattachment
length is determined as the location of the maximum recovery pressure.

3.1.1 Expansion singularities
3.1.1.1 Sudden expansion In Figure 7, the two-phase pressure change along
the pipe and the singularity is plotted for sudden expansion of σ = 0.43 and
at ReL1 = 1.82 · 105. The single-phase result is also drawn on the same graph.
The pressure is measured at the four peripheral taps on the tube sections close
to the singularity (points A, B, C and D) as well as their average (point M).
The two-phase experimental data are compared with prediction of the singular
pressure change for axisymmetric sudden expansion geometry obtained from the
two following models:

Jannsen and Kervinen [1]:

�Ptot = − G2
1

2ρL
(1 − σ)2

[
1 + x

(
ρL

ρG

− 1

)]
, (1)

where G1 is the mass flux upstream from the singularity, ρL is the density of water,
σ is the area ratio, x is the mass quality of air and ρG is the density of air.
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Figure 7: Two-phase static pressure change versus axial position for sudden
enlargement of σ = 0.43 and for ReL1 = 1.82 · 105-comparison with
experimental single-phase and with the models of Jannsen and Kervinen
[1] and Chisholm [4].

Chisholm [4]:

�Pst = − G2
1

2ρL

σ (1 − σ) (1 − x)2
(

1 + C

X
+ 1

X2

)
, (2)

where

X2 �
(

1 − x

x

2
)

ρG

ρL
,

C =
[

1 + 0.5

(
ρL − ρG

ρL

)0.5
][(

ρL

ρG

)0.5

+
(

ρG

ρL

)0.5
]

.

Both models rely on the assumption of a homogeneous flow. Figure 7 shows
that Jannsen’s model [1] fits satisfactorily with the experimental results while
Chisholm’s [4] model overestimates the pressure change. This was also reported
by Velasco [14].

To better emphasize the effect of two-phase flow we define the dimensionless
pressure change �L as follows:

�L = �P TP
Singular

�P SP
Singular

, (3)

where �P TP
Singular is the singular two-phase pressure change as explained in

Figure 6 and �P SP
Singular the single-phase one. Figure 8 displays the evolution of

the experimental �L versus volumetric quality at ReL1 = 2.0 · 105. The data are
compared to the model of Jannsen and Kervinen [1] and Chisholm [4], respec-
tively. As it was previously mentioned, Jannsen’s [1] correlation agrees better
than Chisholm’s [4] correlation with the experimental results. The comparative
graphs given in Figures 9 and 10 indicate that the maximum deviation from the
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Figure 10: Deviation of Chisholm [4]
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experimental data for the model of Jannsen and Kervinen [1] is limited to 5%
while it reaches 10% for Chisholm [4] model.

Measurements with the same flow conditions are repeated for a sudden enlarge-
ment of surface area ratio σ = 0.65. A summarizing graph of the static pressure
recovery measured in both geometries of σ = 0.43 and 0.65 for different ReL1
and for volumetric quality, β, varying from 0 to 35% is presented in Figure 11.
The singular pressure change is increasing for higher β and ReL1. Furthermore,
for the same ReL1 lower σ results in a lower �P (up to three times smaller).

3.1.1.2 Progressive and sudden enlargement: comparison Compared to sud-
den expansion, a progressive enlargement will create for the same flow conditions,
less pressure loss and accordingly will exhibit a higher pressure recovery as
depicted in Figures 12 and 13. Figure 12 shows a single-phase �P diagram along
sudden expansion and divergent of angles 5, 8 and 15◦, of surface area ratio
σ = 0.43 and at ReL1 = 1.8 · 105. In Figure 13, the same type of plot is built
for β = 20% of air. It can be seen that, for single-phase, the pressure drops
17% passing from divergent section of 5◦ to 15◦ and 29% from 5◦ to sudden
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Figure 12: Pressure recovery diagram for single-phase flow and the same ReL1, a
singularity of σ = 0.43 and for sudden enlargement and divergence of
angles 5, 8 and 15◦.

expansion. For two-phase flow, the pressure drop is 11% and 21% respectively.
Additionally, we can notice that all the curves in Figure 13 are shifted to the
right, meaning that the flow becomes fully developed further downstream from the
singularity and thus the recirculation zone is longer in two-phase flow. In the case
of sudden enlargement, contrary to smooth divergence, the pressure before starting
to increase slightly decreases at 1d and starts increasing again at 2d upstream of
the singularity. This is due to the presence of a secondary recirculation zone.

3.1.1.3 Proposed correlation for expansion singularities The proposed cor-
relation relies upon Jannsen [1] formulation. By fitting this model to the experi-
mental values, a corrective coefficient is defined. It turns out that this parameter
C is a function of the opening angle α and ReL1 as shown by the 3D repre-
sentation proposed in Figure 14. Although Jannsen’s [1] model is chosen as the
most accurate, attempts are made with Chisholm [4] model as well. Hence, the
corrective coefficient C for Chisholm’s [4] correlation is represented in a 3D plot
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in Figure 15. In Table 3, the coefficients that are calculated for both models and
for the different parameters tested in progressive expansion are given.

The corrective coefficient C for Jannsen and Kervinen [1] formulation can be
modelled as follows:

C = 0.061 · α0.8917 − 10717 · Re−0.8283
L1 + 0.378. (4)

This coefficient when applied to Jannsen’s [1] model gives a maximum deviation
from the model fit of 58% for the case of σ = 0.43, ReL1 = 1.84 · 105 and 5◦
and minimum of 1.4% for ReL1 = 2.36 · 105 and 15◦. It should be stressed that
further experimental data are needed to refine the C modelling and improve the
validation.
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Table 3: Coefficient for adaption of the Jannsen and Kervinen [1] and Chisholm [4]
models to fit to the experimental results for divergence geometry and for
several α, σ and ReL1.

Jannsen [1] ReL1·105 α [◦] C [-] Chisholm [4] ReL1·105 α [◦] C [-]

σ=0.43

1.84 5 0.4

σ=0.43

1.84 5 1.34
2.3 5 0.26 2.3 5 1.445

1.78 8 0.48 1.78 8 1.3
2.36 8 0.38 2.36 8 1.365
1.76 15 0.7 1.76 15 1.155
2.36 15 0.69 2.36 15 1.163

σ=0.65
1.79 8 0.3

σ=0.65
1.79 8 1.187

2.26 8 0.24 2.26 8 1.365

Finally, the modified Jannsen’s [1] correlation can be written as:

�Ptot = −
[
0.061 · α0.8917 − 10717 · Re−0.8283

L1 + 0.378
]

· G2
1

2ρL
(1 − σ)2

[
1 + x

(
ρL

ρG

− 1

)]
.

(5)

3.1.2 Contraction singularity
3.1.2.1 Measurements in progressive contraction Convergence geometry of
σ = 1.56 and angle 9◦ is studied. The geometry is identical to the test section
shown in Figure 5 with a scaling factor of 1/2 (DN40/32). The experimental
facility and flow conditions are described in section 2.2. Pressure transducers of
type Validyne are used for this experimental campaign with the same acquisition
time (tacq. = 1 min) and sampling frequency (fsampling = 2 Hz). The different
membranes that cover all the range of the pressure measurements are:

1. Calibrated at 0–2.2 kPa
2. Calibrated at 0–8.6 kPa
3. Calibrated at 0–35 kPa

Additionally, numerical simulations are carried out with the commercial CFD
code Fluent. The test parameters and conditions are: 2D axisymmetric computa-
tion, realizable k − ε turbulence model with enhanced wall treatment and second
order discretization scheme. Convergence criterion is set at 10−7. In Figure 16, the
experimental and numerical static pressure drop is plotted against axial position for
several ReL1 in single and two-phase flow. The pressure is decreasing in a regular
way before the singularity; the contraction creates a high pressure drop step and
then starts decreasing regularly downstream.

The flow is observed fully developed close to the singularity (at ≈2d upstream
and downstream) contrary to the case of divergence for which the reattachment
length is detected at ≈10d. Therefore, the singular pressure change �Psingular for
convergence geometry is determined by measuring the static pressure at equal
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distance upstream and downstream from the singularity (2d). A summarizing
graph of all experimental and numerical results obtained for single and two-phase
flow is shown in Figure 17. The results concerning the case of sudden contraction
for several σ and G (Guglielmini et al. [15]) are compared to the experimental
data. The experimental results for smooth contraction are plotted in terms of the
dimensionless pressure change �L, defined by eqn. (3). In Figure 17 Jannsen’s
[1] correlation for sudden contraction is adapted with a correction coefficient of
C = 0.81 to fit with the results (G = 1990 kg/m2s).
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Figure 16: Experimental and numerical single and two-phase static pressure
change versus axial position for convergence of σ = 1.56 and angle
9◦ for several ReL1.
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Figure 17: Experimental and numerical dimensionless singular pressure change
�L versus volumetric quality. Comparison to literature (Guglielmini
et al. [15]) and to the adapted (C = 0.81) Jannsen and Kervinen [1]
model.
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Table 4: Coefficient for adaption of Jannsen’s [1] formulation to fit to the experi-
mental and numerical results for progressive contraction for several G.

Jannsen [1] correlation GL1 [kg/m2s] Correction coefficient C [-]

Convergence-angle 9◦, σ=1.56

1592 0.835
1990 0.800
2786 0.770
4378 0.754

3.1.2.2 Proposed correlation for progressive contraction The correlation for
sudden convergence, as described from Jannsen [1], is recalled:

�PTP = G2
2

2ρL

((
1

CC

− 1

)2

+ 1 − 1

σ 2

)[
1 + x

(
ρL

ρG

)]
. (6)

where Cc is the contraction coefficient defined as Cc = Ac/A1 where Ac the
flow area in the vena contracta. A typical value of this parameter equal to 0.64 is
considered for this investigation. This correlation can be modified and then applied
for the case of smooth contraction. The parameter varying is the mass flux of
water upstream of the singularity GL1. A fit to the present results is made and
the resulting corrective coefficients are listed in Table 4.

A correlation to calculate the correction coefficient C is obtained as a function
of GL1.

C = 2 · 10−8G2
L1 − 0.0001 · GL1 + 0.9913. (7)

The relative discrepancy between experimental-numerical data and model fit,
when eqn. (7) is applied, varies from 5.72% to a maximum of 24.25%. The final
corrected correlation for the case of smooth convergence of angle 9◦ is:

�PTP =
[
2 · 10−8G2

L1 − 0.0001 · GL1 + 0.9913
]

· G2
2

2ρL

((
1

CC
− 1

)2

+ 1 − 1

σ 2

)[
1 + x

(
ρL

ρG

)]
.

(8)

3.2 Flow pattern maps and visualization

Flow regime maps are often considered in two-phase flow. A common chart is the
one proposed by Baker [16]. It has been established for horizontal flows in pipes
of constant cross section. In the present study, the flow is visualized both upstream
and downstream from the singularity. As it is illustrated in Figure 18, four different
flow patterns are identified downstream of the divergence; Bubbly, Plug, Disperse
and Annular flow.

For sudden and progressive enlargement (angles 5◦ and 8◦) with σ = 0.43 and
σ = 0.65, a normal video camera is used to determine the condition for transition
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from bubbly flow to other types of flow just after the singularity. The results are
plotted on Baker’s map and are reported in Figure 19. However, since the departure
from bubbly flow is decided on visual information, the transition criterion remains
rather subjective and the results given in Figure 19 are only indicative.

The second campaign of visualization is performed, using a high-speed camera,
in a fully transparent setup that allows better optical access (without pressure
taps). Consequently, distinction between flow regimes is more straightforward.
In this facility, a progressive enlargement of σ = 0.64 for an opening angle of
α = 9◦ is tested. The flow conditions for which these regimes are visualized are
reported in Figure 20. Finally, we should draw attention to the fact that all flow
conditions calculated refer to the upstream position. Indeed, for these test cases,
the flow regime upstream from the singularity corresponds to bubbly flow (Baker
map) while downstream three additional flow patterns occur (plug, disperse and
annular).

Bubbly Plug

AnnularDisperse

Figure 18: Flow patterns identified downstream of the divergence geometry of α =
9◦ and σ = 0.64.
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Figure 19: Modified Baker [16] map
for progressive and sudden
expansion of σ = 0.43 and
0.65.
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Figure 20: Modified Baker [16] map
for progressive expansion of
σ = 0.64 and α = 9◦.
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4 Conclusions

An investigation of horizontal air-water flow in sudden and progressive enlarge-
ments and smooth contraction is performed. The static pressure evolution along
these geometrical accidents is measured and flow visualization is performed.
The results are expressed in terms of the dimensionless singular pressure change
�L. Compared to literature, a deviation of 5% is found with Jannsen’s [1]
model and 10% with Chisholm’s [4] model for axisymmetric sudden expansion.
For progressive enlargement of the same surface area ratio σ , the smallest the
opening angle, the highest the pressure recovery. For the same flow conditions, the
minimum pressure recovery occurs for sudden enlargement geometry. A modified
version of Jannsen’s [1] correlation is suggested for both progressive expansion
and contraction. A corrective parameter taking into account the different effects of
the divergent angle and the liquid Reynolds number of the divergent section and the
upstream mass flux for convergence, is introduced. The proposed correlation gives
satisfactory results but needs further validation. In the convergence configuration,
the single and two-phase static pressure drop along the pipe is compared with
literature and CFD simulations; a satisfactory agreement is found. Finally, flow
visualization shows that departure from bubbly flow to plug, disperse or annular
flow may occur in the downstream section of a divergent singularity.
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Nomenclature

A surface area [m2]
C correction coefficient [-]
d upstream diameter [m]
D downstream diameter [m]
f frequency [Hz]
G mass velocity [kg/m2s]
J superficial velocity [m/s]
L length of the pipe [m]
P pressure [Pa]
Q̄ volumetric flow rate [l/s]
ReReynolds number [-]
t time [s]
x mass quality [-]
z axial position [m]

Greek symbols
α opening angle [◦]
β volumetric quality [-]
ν kinematic viscosity [m2/s]
ρ density [kg/m3]
σ surface area A1/A2 [-]
� dimensionless �P [-]

Sub-Superscripts Abbreviations
c contraction SP single-phase

G gaseous phase st static
L liquid phase tot total
1 upstream TP two-phase
2 downstream
s singularity
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