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Abstract 

In this paper linear and nonlinear issues of a mixing layer at Mc=1.2 are studied 
with a DNS method. Navier–Stokes equations in perturbation form are solved 
with a finite difference method of third-order accuracy. An approximated 
boundary condition treatment of small disturbance along the outside boundary is 
proposed on flow characteristics. This boundary condition is verified to be valid 
in the numerical case. Linear issue of a mixing layer at Mc=1.2 is simulated. 
Three modes of instability in the mixing layer have been simulated: Slow-Mode, 
Fast-Mode and Mix-Mode. Nonlinear issues of the mixing layer at Mc=1.2 are 
also studied. The mode transition of the mixing layer instability is simulated. At 
low-frequency disturbance, simple mode instability develops in the mixing layer 
upstream, which is Slow-Mode instability. In the middle of the mixing layer, the 
Mix-Mode instability develops, and Mix-Mode instability are shifting to Fast-
Mode in the downstream. 
Keywords:  mixing layer, DNS, boundary condition, acoustic radiation vortex 
mod, mode transition. 

1 Introduction 

Instability of a supersonic mixing layer is a fundamental phenomenon leading to 
turbulent flow. It is important to study the production and evolution of  
two-dimensional and three-dimensional unstable structures in a planar 
supersonic mixing layer to understand the mechanism of transition. It is known 
that there are several ways leading to the development of three-dimensional 
structures. Secondary instability is a natural way to make three-dimensional 
structures and then to transition.  
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DNS (direct numerical simulation) is a useful tool to study the instability of 
the mixing layer. Boundary condition’s treatment is an important technique for 
DNS to resolve the compressible N-S equations in the study of supersonic 
mixing layer instability and transition. Inadequate boundary condition’s 
treatment will introduce the non-physics fluctuations from the boundary of the 
flow field, and affect the natural instability of supersonic shear layer. The present 
work is focused on the secondary instability and the boundary condition’s 
treatment in DNS of the supersonic mixing layer. 

In decades, many studies about shear layer instability have been made. It is 
well known that the supersonic shear layer instabilities are Kelvin–Helmholtz 
instabilities from the incompressible flow that is involved with vortex roll-ups 
and pairing, and which is also a kind of Tollmien-Schlichting wave. 

In 1984, W.S. Saric, V.V. Kozlov and V.Y. Levchenko studied the 
development of three-dimensional disturbance waves in incompressible 
boundary layers by visualization. They found that the two-dimensional T-S wave 
grows into three-dimensional structures in evolvement processes and the new 
three-dimensional perturbation wave is a periodic “λ” vortex in streamwise and 
lateral direction. The three-dimensional instability waves are cataloged into three 
types: C-type [1], H-type [2] and K-type [3]. 

D. Papamochou and A. Roshoko [4] defined the convective Mach number, 
which is the parameter of the compressibility in the supersonic shear layer and 
proved that by experiment in 1986. The Mc has been found to be a key 
parameter to describe the compressibility of the flow. 

In 1989, S. K. Lele [5] studied the compressible free shear flow with the 
DNS method. In his simulations on supersonic mixing layer flows of Mc<1.0, 
vortex roll-up and pairing dominate the instability process. He also found  
shock-lets may emerge with vortex structure for Mc>0.7.  

In the year 2000, Q. Shen and H. Zhang [6] studied a spatially developed 
two-dimensional supersonic mixing layer at Mc=0.5 with the DNS method, and 
found the intermittency takes place during the vortex unstable evolvement. The 
intermittent structure comes from nonlinear vortex roll-up and paring process 
that was analyzed by J. R. Luo et al [7]. The Lyapunov index and fractal 
dimension were calculated, and show a typical nonlinear growth. 

In 2006, the secondary instability of a planar supersonic shear layer at 
Mc=0.5 is simulated. The secondary instability is a nature transition phenomenon 
by Q. Shen et al [8]. In 2006, F.M. Guan and Q. Shen [9] made a DNS study on 
secondary instability in a planar supersonic shear lay at Mc=0.5 and found the 
secondary instability take place along with the T-S wave evolution and the two-
dimensional vortex pairing are intermittent in the supersonic shear layer. In 
2007, F.M. Guan et al [10] studied the K-type and H-type instability in a 
supersonic mixing layer, and found the secondary instability could be obviously 
hampered by vortex pairing. 

In 2007, Q. Shen et al [11] had studied the mixing layer at Mc=1.2 on LST. 
They found that there are three modes of the mixing layer instability, which are 
Slow-Mode instability led by low frequency disturbance, Fast-Mode instability 
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led by high frequency disturbance and Mix-Mode led by middle frequency 
disturbance. 

In the present work, a boundary condition’s treatment is studied to approach 
the supersonic shear layer instability in resolving the perturbation form N-S 
equations. Instability of a planar two-dimensional supersonic shear layer at 
Mc=1.2 has been studied with this boundary condition’s treatment, and the 
acoustic radiation vortex mode has been found. All of the numerical results of 
the supersonic shear layer instability indicate that the boundary conditions 
treatment is adequate. 

2 Governing equations and numerical method 

The compressible two-dimensional unsteady Navier–Stokes equations are: 
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In the study of supersonic shear layer instability, the flow field is computed in 
two processes that first one is the study undisturbed flow field computation and 
the second one is unsteady disturbed flow field computation. Assuming 
undisturbed flow is steady state, as 0

ˆˆ EE = , 0̂
ˆ FF = , 0

ˆˆ
vv EE = , vov FF ˆˆ = , 

which satisfy steady Navier–Stokes equations as 
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where subscript “0” is denoted for steady state i.e. base flow, the flow can be 
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followings 
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0vvv . Eqn (3) are the governing 

equations, which define the perturbation waves travelling within the base flow. 
These equations are solved using a finite difference method [8] which is the 

third-order accuracy in spatial and in temporal direction. 
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3 Boundary conditions 

The boundary conditions treatment in compressible Navier–Stokes equations had 
been mature. The boundary conditions treatment is according to the direction of 
disturbance propagation in the compressible Navier–Stokes equations. In two-
dimensional unsteady compressible Navier–Stokes equations, there are four 

eigenvalues of 
Q
E
ˆ
ˆ

∂
∂

 in ξ  direction which are U== 21 λλ , cU +=3λ , 

cU −=4λ , and four eigenvalues of 
Q
F
ˆ
ˆ

∂
∂

 in η  direction which are 

V== 21 λλ , cV +=3λ , cV −=4λ . c  is the acoustic speed, 
ρ

γ pc = . 

In the supersonic flow field, the four eigenvalues on stream wise are all positive 
and one eigenvalue on flow normal direction is positive. There three eigenvalues 
on stream wise are positive and one eigenvalue on flow normal direction is 
positive in subsonic flow.  

The schematic of a mixing layer is shown in fig. 1. On the inflow boundary, 
the flow is supersonic and flow variables are constants and equal to incoming 
flow parameters. In supersonic, extrapolation is usually used to get the flow 
variables on the outflow boundary. The top and bottom boundaries are free flow 
conditions. For the undisturbed base flow, 021 === Vλλ , 

03 >+= cVλ and 04 <−= cVλ .  
 

 
Figure 1: Schematic of a mixing layer. 

For the perturbation flow, the disturbance assumes to travel from free 
boundary to the outside. Outside the mixing layer, the amplitude of the 
disturbance wave is quite small. These small disturbance waves are assumed as 
adiabatic. With this assumption u′ , v′  and p′  are obtained by extrapolations. 
ρ′ is obtained from adiabatic relation as: 

p
dpd ρ

γ
ρ 1
=                                              (4) 
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By this approximation, the non-reflecting boundary condition is obtained. This 
relation is to be verified in the next computational case. 

4 Acoustic radiation vortex mode in two-dimensional 
supersonic shear layer at Mc=1.2 

A computational case is set which is a supersonic free mixing layer at Mc=1.2. In 
present computational cases, M1=3.5, M2=1.1 are taken for two flow streams. 
Other flow conditions are T∞=1200.0.0K for flow temperature, ρ∞=1.0 for  
non-dimensional flow density, and ReL=1.0E+6 with reference length L.  

The undisturbed steady flow field is obtained by resolving the steady  
Navier–Stokes equation with a second order accurate NND scheme. The base 
flow used for DNS computation is cut from this flow field. The profile of base 
flow at x/L=1.0 which gives u, ρ and p by y is shown in fig.2.  
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Figure 2: Steady mean flow profiles at x=1.0. 

4.1 Linear simulation 

One case is set which is used to simulate linear development of a disturbance 
wave in the mixing layer. The computation region is 1.0<x<2.5 in stream wise 
and -0.188<y<0.188 in lateral direction. In the present computation, 205×201 
grids in x, y directions are used, shown in fig. 1. A fundamental frequency 
disturbance wave in lateral velocity is introduced in the central point of the 
inflow boundary, which is: 

( )tv ϖε sin=′                                                   (5) 

There, the amplitude of the disturbance wave is 510−=ε , and the circular 
frequency of the disturbance wave is ϖ . Three circular frequencies have been 
chosen in present computational case, which are 50,40,20=ϖ . The results 
are shown in fig. 3.  
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(a) 0.20=ϖ  

 
(b) 0.40=ϖ  

 
(c) 0.50=ϖ  

Figure 3: Contours of perturbation pressure p′ . 

In the downstream of the mixing layer, three disturbance waves with different 
frequency all lead the expansion/compression wave’s structures. This flow 
structure is a radiation characteristic, and will suppress the rate of mixing layer 
growth. Especially, three flow structures are obvious different radiation 
characteristic, that the flow structure led by low frequency disturbance wave 
radiates in the region of high velocity, the flow structure led by high frequency 
disturbance wave radiates in the region of low velocity and the flow structure led 
by middle frequency disturbance wave radiates in both high velocity region and 
low velocity region. It is indicated that the response of the supersonic mixing 
layer to disturbance wave depends on the frequency of disturbance wave. We 
name the flow structure led by low frequency disturbance Slow-Mode, the flow 
structure led by high frequency disturbance Fast-Mode and the flow structure led 
by middle frequency disturbance Mix-Mode. 

4.2 Nonlinear simulation 

The other case is set which is used to simulate the nonlinear development of the 
disturbance wave in the mixing layer. The computation region is 1.0<x<5.0 in 
stream wise and -0.25<y<0.25 in lateral direction. In the present computation, 
4001×201 grids in x, y directions are used, shown in fig. 1. A fundamental 
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frequency disturbance wave in lateral velocity is introduced in the central point 
of the inflow boundary, which is: 

( )tv ϖε sin=′                                                   (6) 

There, the amplitude of the disturbance wave is 310−=ε , and the circular 
frequency of the disturbance wave is 30＝ϖ . The results are shown in fig. 4.  
 

 

Figure 4: Disturbance pressure p′  contours. 

In the linear simulation, the low frequency of disturbance wave will lead the 
Slow-Mode. In the nonlinear computation, the thickness of the mixing layer 
grows in stream wise, and the response frequency to simple frequency rises in 
stream wise. So, the low frequency disturbance wave leads the Slow-Mode in 
inflow region of the mixing layer, the Mix-Mode in the middle region of the 
mixing layer. In the end of the mixing layer, the flow structure is that which the 
Fast-Mode dominates, shown in fig. 4. 

Otherwise, the far field boundary conditions treatment in the present is 
verified in this computation, shown in fig. 5. Firstly, the phase of p′  is the same 
as the phase of ρ′ . Secondly, flow variables of a point arbitrary selected from 
the mixing layer flow field, which is far from the centre of mixing layer and far 
from the far free boundary, is studied. In this case, a point studied at (3.145,-
0.159) in the flow field is selected and the flow variables on it are:  

407.7 −=′ ep , 0258.0=p , 458.8 −=′ eρ , 0.1=ρ  

It can be found from these values that 4.1/ =
′′
ρ
ρ

p
p

. This result indicates that 

it is an adiabatic process and the boundary condition given by eqn. (4) is valid. 

 

Figure 5: Perturbation pressure and density outside the mixing layer          
(y=-0.159). 
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5 Conclusion 

An approximated boundary condition treatment of small disturbance outside the 
boundary is proposed based on flow characteristic.  

Linear issues of a mixing layer at Mc=1.2 are simulated on the DNS method. 
Three modes of instability in the mixing layer are simulated, which are  
Slow-Mode, Fast-Mode and Mix-Mode.  

Nonlinear issues of the mixing layer at Mc=1.2 are also studied. The 
instability mode transition of the mixing layer is found. At low frequency 
disturbance, simple instability mode develops in the mixing layer upstream, 
which is Slow-Mode instability. In the middle of the mixing layer, the Mix-
Mode instability develops, and Mix-Mode instability are shifting to Fast-Mode in 
the downstream. 
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