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Abstract 

Both bubble coalescence and droplet separation are important physical 
phenomena in the natural world and a variety of process industries. This paper 
presents results of numerical simulation of behaviours of bubble coalescence and 
droplet separation. The velocity distribution functions of two particles are used 
in lattice Boltzmann equations. Based on the lattice Boltzmann method (LBM), 
both the phenomena of two rising bubbles coalescing in liquid and a liquid 
droplet break-up on wetting boundaries are simulated. Typically, such           
two-phase problems of large ratio of liquid–gas densities up to 1000 are studied.  
Keywords:  bubble coalescence, droplet separation, numerical modelling, lattice 
Boltzmann method.  

1 Introduction 

Both bubble coalescence and droplet separation are important physical 
phenomena in the natural world and a variety of process industries. It is a 
common occurrence in two phase flow and flow boiling that the evolution of 
bubbly flow to slug and annular flows accompanies processes of bubble 
coalescences. The coalescence or separation of droplets are also popular in 
droplet and film cooling condensations under difference surface conditions. 
Numerical modelling of bubble coalescence or droplet separation has been 
attempted by researchers for many years.  Conventional CFD methods based on 
solving Navier-stokes equations can simulate free surface flow and bubble shape 
evolution with time [1-3] but can not effectively simulate problems of bubbles or 
droplets coalescences. Although the phenomena of bubble coalescences have 
been simulated by VOF method in [4] but only a two dimensional problem was 
discussed and the ratio of gas-liquid densities was also limited.   
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     In recent years, the lattice Boltzmann method (LBM) has become an 
established numerical scheme for simulating multiphase fluid flows. Several 
researchers have applied LBM to study multiphase flow including bubbles or 
droplets coalescence [5-7].  The key idea behind the LBM is to recover the 
correct macroscopic motion of fluid by incorporating the complicated physics of 
the problem into simplified microscopic models or mesoscopic kinetic equations. 
In this method, kinetic equations for particle velocity distribution function are 
solved; and macroscopic quantities are then obtained by evaluating 
hydrodynamic moments of the distribution function. LBM has many 
computational advantages, such as parallel of algorithm and simplicity of 
programming [8].  In LBM modelling of multiphase fluid flows, Gunstensen et 
al. [9] developed a multi-component model based on the two-component lattice 
gas model; Shan and Chen [10] presented a model with mean-field interactions 
for multi-phase/component fluid flows; Swift et al. [11, 12] proposed a LBM 
model for multi-phase flows using the idea of  free energy;  He et al. [13] also 
developed a model using the index function to track the interface of multi-phase 
flow.  To overcome the shortcoming that the above LBM schemes can only 
simulate two-phase fluids with small density ratios (less than 20) due to 
numerical instability, Inamuro et al. [6] proposed a LBM for incompressible two-
phase flows with large density differences by using the projection method.  
Briant et al. [14-15] developed an approach based on the free energy model 
introduced in [11, 12] to simulate partial wetting and contact line motion in two-
phase fluids. However, as the method naturally inherits the disadvantage of 
original free energy model of Swift et al. [11, 12] and can only be used to 
simulate problems with a small density ratio which was around 2 [14]. 
     In the present paper, based on a new LBM scheme developed in [16], both 
bubble coalescence in liquid with unconfined boundary and a liquid droplet 
separation on a wetting boundary are studied.      

2 The Lattice Boltzmann Model 

Based on the three-dimensional nine-velocity (D3Q15) LBM model, as shown in 
Fig. 1, the particle velocity in the thα direction, αe , is given by [6] 
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To simulate a two-phase flow problem, two velocity distribution functions of 
particles, αf  and αg , are introduced.  Function αf  is used to calculate the order 
parameter, φ , which distinguishes two phases, and function αg  is used to 
calculate the predicted velocity, *u .  
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     The evolution of particle distribution functions )t,x(fα  and )t,x(gα  with 
particle velocity αe  at point x  and time t  is calculated by following equations: 
 

)t,x(f)t,ex(f )eq(
tt ααα δδ =++                                      (2) 

)t,x(g)t,ex(g )eq(
tt ααα δδ =++                                      (3) 

 
where u , ρ  and µ  are the macroscopic velocity, density and dynamic viscosity 
respectively; 1=tδ  is the time step during which the particles travel the lattice 
spacing; )eq(fα  and )eq(gα  are the corresponding equilibrium states of αf  and αg , 
which have been given in details in [16]. 
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Figure 1: Discrete velocity set of three-dimensional fifteen-velocity model. 

     The macroscopic quantities, *u , φ , ρ , µ  in the LBM can be evaluated as 
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where *

Lφ  and *
Gφ  are the cut-off values of the order parameter, Lρ  and Gρ  are 

the density of liquid and gas phases respectively. Lµ  and Gµ  are the dynamic 
viscosity of liquid and gas phases respectively. GL ρρρ −=∆ , *

G
*
L

* φφφ −=∆  and 

2/)( *
G

*
L

* φφφ += . 
     To obtain the velocity field which satisfies the continuity equation ( 0u =⋅∇ ), 
the predicted velocity *u  is corrected by using the following equations, 
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where p  is the pressure of the two-phase/component fluid, which can be 
obtained by solving Eq. (8) in the following LBM framework for velocity 
distribution function: 
 

     *u)]n,x(p)n,x(h[)n,x(h)n,ex(h ⋅∇−−−=++
ρ

ω
ω
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α
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1
3

11         (9) 

 
where n  is the number of iterations, αω  is wetting coefficient and ρτ /. 150 +=  
is a relaxation time. The pressure at step 1+n  is given by 
 

     ∑ +=+
α

α )n,x(h)n,x(p 11                                      (10) 

 
The convergent pressure p  is determined when  
 

     ε<+−+∈∀ |)n,x(p)n,x(p|,Vx 11                              (11) 
 
where V  denotes the whole computational domain. Substituting the newly 
obtained pressure p into and solving Eq. (7) gives the corrected velocity field u .   
     As stated and demonstrated in [6, 16], this method can be used to simulate 
two-phase flow with density ratio up to 1000. 

3 Wetting boundary condition 

The liquid–gas surface tension force LGσ  is given in [17] as 
 

     β
φφ

σ f
GL

LG k
)(

2
6

3−
=  ;                                       (12) 

 
where Lφ  and Gφ  are the order parameters of liquid and gas, respectively; fk  is 
a constant parameter to decide the width of interface and the strength of surface 
tension; β  is the constant relating to interfacial thickness. According to Young’s 
law [18], when a liquid–gas interface meets a partial wetting solid wall, the 
contact angle, wθ , measured in the liquid, can be calculated from a balance of 
surface tension forces at the contact line as 
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where SGσ  and SLσ  are the solid-gas and solid–liquid surface tensions, 
respectively, which can be represented as [16]: If 0>λ ,  
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and if 0<λ , 
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where 4 3, ,,i 21=φ  are the solutions of order parameter; ψ  is the free energy density, 
and Ω  the wetting potential given by   
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where ( )sfk φψλ 2±= , sφ  is the order parameter at solid wall [16]. The wetting 
angle can be determined by substituting Eq. (12) and Eqs. (14)-(17) into Eq. (13) 
and written as 
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For a given wetting angle at πθ << w0 , Ω  can be obtained from Eq. (19) as, 
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where )arccos(sin wθγ 2=  and )sgn(ξ  gives the sign of ξ .  It is noted from Eq. 
(20) that the required wetting potential Ω  can be obtained by choosing a desired 
contact angle wθ  and then calculating λ  by Eq. (18) with a newly obtained Ω . 
     In order to introduce the partial wetting boundary condition to the LBM 
simulation through imposing it through equilibrium distribution functions )eq(fα  
and )eq(gα , the following boundary conditions should be imposed: 
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where z is the perpendicular direction to the wall.  In this scheme, Eq. (21) is 
used to determine the first term on the right hand side of Eq. (22). While the 
second term is calculated using a standard centred finite-difference formula. 
Finally, Briant et al. [14] found empirically that the best choice for the third term 
is a left-handed finite-difference formula taken back into the wall, i.e. 
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Figure 2: Computational domain. 

4 Results and discussion 

4.1 Bubble coalescence in unbounded liquid 

The method is firstly applied to bubble coalescence; the coalescence of two 
rising bubbles is simulated and two cases are calculated. The computational 
domain is shown in Fig. 2. In an initial study, two bubbles with the same 
diameter D are placed 5D/4 apart in a liquid inside a rectangular domain and is 
released at time 0=t . Calculations are carried out for the cases of liquid and gas 
phases with different density ratios, GL / ρρ , and viscosity ratios, GL / µµ . 
Dimensionless parameters, Morton number: )/()(gM LGLL

324 σρρρµ −=  and 
Eötvös number: 32 σρρ /D)(gE GL −=  are applied for the simulated 
phenomena. Periodic boundary conditions are imposed on all sides of the 
computational domain, which is divided into 64 × 64 × 128 cubic lattice. The 
diameter of each initial bubble occupies 24 lattice spaces, i.e. xD δ24= . The 
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behaviour of the two bubbles evolutes with time, typically how the lower bubble 
catches up and finally coalesces with the upper bubble is studied. Velocity 
vectors of both inside and around the bubbles during the evolution are also 
studied. 
     Fig. 3 shows time evolution of two bubble coalescence and velocity vectors at 
section of 2/Ly y= . The two gas bubbles rising in an unbounded liquid with 

50=GL / ρρ , 50=GL / µµ , dimensionless Morton number 5101 −×=M , and 
Eötvös number 10=E  are simulated; where *t  refers to dimensionless time 
( D/tU*t = ), here U is the terminal averaged velocity of gas phase. 
     Fig. 4 shows two bubble coalescence when gas bubbles rise in an unbounded 
liquid at 1000=GL / ρρ , 50=GL / µµ , Morton number 1=M , and Eötvös 
number 15=E .  The upper figure shows time evolution of bubble shapes and 
the lower figure shows the velocity vectors at section of 2/Ly y= ;  

 

      
0=*t  1.3647=*t  3.3696=*t  

      
4.0435=*t  4.4816=*t  4.8859=*t  

Figure 3: Coalescence of two rising bubbles in liquid with 50=GL / ρρ , 
50=GL / µµ , 5101 −×=M , 10=E . 

4.2 Droplets separation on a wetting boundary 

The method is applied to calculate a water droplet spreading on a uniform 
wetting surface.  Initially, as shown in Fig. 5, the shape of droplet is spherical, 
the distance between the centre of the sphere and the wall is m101 3−×=r , where 
r  is the radius of the initial droplet. The computational domain is filled with air 
except the location occupied by the water and is divided into 40100120 ××  
uniform cubic lattices. 
     The motion of water droplets at normal temperature surrounded by air on 
partial wetting walls is considered. Naturally, the densities of two fluids are set at 

3kg/m 3101×=L
~ρ , 3kg/m 291.~

G =ρ , and meanwhile the dynamic viscosities of 
them are at s kg/m 3101 −×=L

~µ , s kg/m 5109351 −×= .~
Gµ , respectively. The initial 

surface tension between water and air is 2kg/s 3101 −×=LG
~σ  and the gravitational 
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acceleration is set at 2m/s 89.g~ = . To relate the physical parameters with 
simulation parameters, a length scale of m 101 4

0
−×=L , a time scale of 

s 6
0 101 −×=T  and a mass scale of kg 101 12

0
−×=M  are chosen; these lead to the 

dimensionless parameters: 3101×=Lρ ; 29.1=Gρ ; 1.0=Lµ ; 3109351 −×= .Gµ ; 
40.L =φ ; 10.G =φ ; 05.0=k ; 8108.9 −×=g . Unless otherwise specified, the 

flowing simulations are within a cuboid computational domain with a no-slip 
boundary at the lower surface, i.e. the flat partial wetting wall, and the free 
outflow/inflow boundaries at the other five surfaces. ε  in Eq. (11) is set as 

6101 −×=ε . 
 

     

     
0.2044=*t  0.6132=*t  1.0221=*t  1.4309=*t  1.8397=*t  

     

     
2.2485=*t  2.6573=*t  3.0662=*t  3.4750=*t  3.8838=*t  

Figure 4: Time evolution of bubble shapes and Velocity vectors at section of 
2/Ly y=  of coalescence of two rising bubbles in liquid with 

1000=GL / ρρ , 50=GL / µµ , 1=M , 15=E . 

      Fig. 6 shows how a small hemispherical water droplet evolves with time on a 
heterogeneous surface. A narrow hydrophobic strip with width of ml 4106 −×=  is 
located at the centreline of the surface where 65 /w πθ = , and the other area is 
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occupied by the hydrophilic surface with 6/w πθ = . The initial droplet which 
has a radius m31051 −×= .r  is set at the centre of the wetting surface. As shown 
in Fig. 6, the droplet stretches over the area occupied by the hydrophilic surface 
in the early stages of flow evolution due to the adhesive force of the surface. At 
the same time, the droplet rapidly contracts inward along the hydrophobic strip. 
With the development of time, the droplet spreads further on the hydrophilic 
area, and meanwhile contracts inward along the hydrophobic strip and finally 
breaks up into two smaller droplets. The newly formed droplets continue 
spreading until an equilibrium state is reached. For a uniform hydrophilic surface 
separated by a hydrophobic strip, the spreading dynamics of the droplet is 
affected by three parameters, namely, the width of the hydrophobic strip, the 
gravity and the wetting property of the hydrophilic surface [19].  A further 
examination and analysis of the effects of these three parameters on the 
spreading and break-up of the droplet will be done in the near future. 
 

 

Figure 5: Computational domain. 

 

 
s.t 00=   

s.t 0150=  
 

s.t 140=  

 
s.t 150=  

 
s.t 1520=  

 
s.t 1540=  

Figure 6: Snapshots of droplet spreading and its break-up on heterogeneous 
surface. 
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5 Conclusions 

A lattice Boltzmann method which can simulate two-phase fluids with large 
density ratio, and meanwhile deal with interactions between a fluid-fluid 
interface and a partial wetting wall is developed. Based on this method, the 
dynamics of two rising bubbles in a liquid with liquid–gas density up to 1000 is 
simulated.  In addition, it is also simulated that a liquid drop breaks up on 
uniform and heterogeneous walls with liquid–gas density ratio of 1000:1.29.   
The results of simulations can generally confirm that the current LBM is suitable 
to study such two-phase flow problems with high ratios of liquid–gas densities 
and with such partially wetting boundaries.  A further experimental validation of 
the numerical method will be carried out in the near future. 
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