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Abstract

The equivalent conductivity tensor is computed with a method based on the
solution of the balance equation at the fine scale. In particular the balance equation
is solved on a block assigning Dirichlet boundary conditions that vary linearly with
the space coordinates and the equivalent conductivity tensor is the linear tensor
relating average flux and hydraulic gradient. Previous works prove that this method
yields a symmetric equivalent conductivity tensor both for continuous domains
and for discrete models based on integrated finite differences. Here the equivalent
conductivity tensor is computed for two lateral faces of a volume of glacio-fluvial
sediments and the results are compared with those obtained with a standard finite
differences method on square grids with different spacings.
Keywords: upscaling, equivalent conductivity, symmetry, integrated finite
differences.

1 Introduction

Discrete models of ground water flow are usually based on the discretisation
of the subsurface in grid-blocks for which homogeneous equivalent block-
scale hydraulic conductivities must be specified. In real porous media the
local scale K tensor is heterogeneous within a block and therefore it is
necessary to find an equivalent conductivity tensor, K̃, for each grid-block.
The basic idea for upscaling is that the block-averaged Darcy’s velocity,
〈q〉, and hydraulic gradient, 〈J〉, are related by a block-scale Darcy’s law:
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〈q〉 = −K̃ 〈J〉 . (1)

Reviews and classifications of the different approaches used to transform a detailed
description of the spatial variability of K to a coarser description can be found
in [1, 8–10, 13, 16].

The block conductivity tensor is in general non diagonal, because the
geometrical regularity of heterogeneity at the fine scale, e.g. layering, yields
anisotropy at the coarse scale [14]. Moreover, when eqn. (1) is applied, K̃ is not
an intrinsic property of the block, but depends on the boundary conditions and the
source terms. However we can decompose 〈q〉 as

〈q〉 = −K̃ 〈J〉 + qnD, (2)

where qnD represents the non-Darcian block-averaged flow rate. The equivalent
conductivity tensor, K̃ , defined by eqn. (1) and computed with the technique
proposed in the second section is a local property of the medium at the coarse scale.
Non-local effects are described by qnD, which depends on the whole conductivity
field, on the boundary conditions, and on the source terms.

Theoretical studies show that the computation of K̃ with arbitrary boundary
conditions might yield a non symmetric tensor, which therefore could not admit
principal directions of anisotropy, whereas with some assumptions the symmetry
of the block conductivity tensor is demonstrated for instance by [3, 11] and
[17]. Farmer [4] states sufficient conditions that guarantee the symmetry of K̃
for a continuous domain: he shows that K̃ is symmetrical for any conductivity
distribution and for any shape of the domain, if it is obtained from eqn. (1) and if
〈q〉 is computed by solving forward problems with Dirichlet boundary conditions
such that the prescribed head is a linear function of the space coordinates.

In [6] we extend this theorem to a physically based conservative discrete model
using the integrated finite differences method (IFD), proposed in the ground water
literature by [7] and applied by some authors to model regional flow [5, 12].
In [6] the focus is on 2D stationary flow in a confined aquifer, so that the physical
parameter to be considered is the aquifer transmissivity; the proof of the symmetry
of the upscaled transmissivity tensor given by [4] is followed and it is rigorously
demonstrated that K̃ is symmetric even in the discrete case for physically based
conservative numerical models.

The goal of this paper is to test the result obtained in [6] on some numerical
examples: the equivalent K̃ tensor is computed for two faces of a volume of glacio-
fluvial sediments belonging to Pleistocene sequences of the Ticino basin (Northern
Italy) described in [15]. We show that IFD can be useful to model media which are
the union of many zones, each of which characterized by a single hydrofacies: in
fact this method permits the discretisation of the discontinuities between different
zones in a more accurate way than standard finite differences techniques which
cannot handle non-rectangular grid cells.
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2 The computation of the symmetric equivalent conductivity
tensor

We refer to discrete models for which the porous medium under study is
subdivided into coarse blocks, and each coarse block is subdivided into a fine grid
of cells, so that at each fine cell the conductivity takes a different value. For the
sake of simplicity we refer to 2D flow in the vertical x-z plane, but the basic results
can be easily extended to 3D flow.

The block conductivity tensor is computed with a local-numerical approach [9],
or local-local technique according to the classification of [4]. In the local methods
the equivalent block conductivity is assumed to depend only on the local K values
inside the block. Numerical techniques are based on the numerical solution of
balance equations: the spatially averaged flow through each block is computed
from the solution of the flow problems at the fine scale and eqn. (1) permits to
compute an upscaled conductivity tensor for the coarse scale blocks.

Virtual experiments are conducted on a block, solving the discrete balance
equation on the fine grid; the boundary conditions are assigned at the border of
each block as prescribed heads that are linear functions of the space coordinates.

The fine grid is based on a set of nodes, around which Voronoi polygons (fig. 1)
are built as the union of the mediators of each segment joining adjacent nodes [2,
p. 353]. Each node will be denoted either by an integer index, e.g. j, or by its
position vector, e.g. xj = ((x1)j , (x2)j); the node index is used to label the cell
corresponding to the domain enclosed by a Voronoi polygon.

Figure 1: Grid built with Voronoi polygons. di,j is the length of the internode
segment connecting nodes i and j; li,j is the length of the side separating
the cells i and j; the area of the gray region is (di,j li,j) /2 (from [6]).

Let N be the set of nodes which belong to a coarse block, and let N = N0∪Nb,
where N0 is the subset of nodes for which the balance equation can be written, Nb

is the subset of the boundary nodes.
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The balance equation for any cell j ∈ N0, assuming that the source terms are
null, has the form:

1
Aj

∑
i∈Sj

Ki,j
hi − hj

di,j
li,j = 0 (3)

where: Sj is the subset of nodes connected to the j-th node; Aj is the area of the
j-th cell; Ki,j is the internode conductivity; hj is the piezometric head at the j-th
node; di,j = ‖xi − xj‖ is the distance between the i-th and j-th nodes; li,j is the
length of the side separating the i-th and j-th cells.

Each of the terms Ki,j (hi − hj) d−1
i,j li,j appearing in the summation of eqn. (3)

corresponds to the flux per unit length along y direction entering in the j-th cell
through the side separating it from the i-th cell.

Notice that the standard finite differences method can be viewed as a special
case of the IFD method, in particular for square cells li,j = di,j = ∆x, where ∆x
is the grid spacing.

Let the boundary conditions on the piezometric head assigned at the border of
the coarse block be linear:

h
(r)
i = xi · e(r), i ∈ Nb, (4)

where
e(1) = (1, 0), e(2) = (0, 1)

and the index r refers to the r-th virtual experiment; the piezometric head h(r)

satisfies eqn. (3).
In the numerical tests the equivalent tensor K̃ is computed from eqn. (1) and is

given by:

K̃sr =
1
A

∑
j∈N

∑
i∈Sj
i≤j

Ki,j

h
(r)
i − h

(r)
j

di,j

li,jdi,j

2
(xs)i − (xs)j

di,j
, (5)

where

A =
∑
j∈N

∑
i∈Sj
i≤j

li,jdi,j

2
.

In [6] the same track of the proof given by [4] for the continuous case is
followed; gradients are substituted with finite differences approximations and
integrals are substituted with sums over a block.

The following expression, equivalent to eqn. (5), is obtained for the components
of K̃ and implies the symmetry of the equivalent conductivity tensor at the coarse
scale:

K̃sr =
1
A

∑
j∈N

∑
i∈Sj
i≤j

Ki,j

h
(r)
i − h

(r)
j

di,j

h
(s)
i − h

(s)
j

di,j

li,jdi,j

2
. (6)

The index s refers to the direction of flow, whereas r refers to the component of
the hydraulic gradient. Notice that li,jdi,j/2 is the surface of the gray area in fig. 1.
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An alternative way to compute K̃ [6] is based on the equivalence between
the dissipated energy averaged over a block, −〈q · J〉, and computed from block
averaged quantities, −〈q〉 · 〈J〉, i.e. the equivalent conductivity tensor is obtained
with the condition that

−〈q · J〉 = −〈q〉 · 〈J〉 =
2∑

m=1

2∑
n=1

K̃m,n 〈Jm〉 〈Jn〉 . (7)

In [6] we show that the block conductivity tensors computed from the criteria
of equivalence of flux and of energy dissipation coincide if fixed head boundary
conditions that vary linearly in space are assigned.

3 A case study

The local-numerical approach described in section 2 is applied to Pleistocene
sequences of the Ticino basin (northern Italy), where some volumes of glacio-
fluvial sediments outcropping at a quarry site are investigated at the meter scale
[15]. Here we consider two lateral faces (labelled by A and C in [15]) of one of
these volumes. In [15] a simplified scheme of “operative facies” is obtained by
grouping facies into five categories, each characterised by a constant conductivity
value, obtained from laboratory tests or estimated with empirical formulas. The
boundaries between individual facies and depositional units are drawn in fig. 2,
where different operative facies are represented with different shadings.

The flow model is applied to each face under the assumption of 2D flow, and K̃
is computed at the block scale, considering the whole face as a block.

Figure 2: Sedimentological interpretation and operative facies of Faces A and C.
Grey: open framework gravel (K = 5 · 10−2 m/s); horizontal lines:
sandy gravel well sorted (K = 2 · 10−3 m/s); dots: sandy gravel poorly
sorted (K = 6 · 10−4 m/s); vertical lines: coarse to medium sand
(K = 5 · 10−4 m/s); white: fine sand (K = 10−4 m/s).

Notice that in [15] cobbles with diameter greater than 2 cm are considered as
impermeable bodies to perform the 3D flow modeling; here we do not consider
those features, because their use in a 2D flow model introduces impermeable
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structures with a large and non realistic lateral extension along the direction
orthogonal to the face.

The tensor K̃ is computed using the local-numerical approach based on the
solution of the balance equation with the IFD method: for each face two examples
of Voronoi grids are considered and the results are then compared with those
obtained with a standard finite differences technique on square grids with different
spacings. The Voronoi grids are a coarse one (IC), with nodes placed only along
the discontinuities among operative facies, and a fine one (IF) obtained by adding
some nodes far from the discontinuities.

Table 1: Equivalent conductivity tensors (10−4 m/s). Rn indicates the regular grid
with spacing of n cm; IC indicates the results obtained with the coarse
irregular grid, IF those obtained with the fine grid.

Face A

Grid R8 R4 R2 R1 R0.5 IC IF

K̃xx 17 26 29 30 31 32 32

K̃xz 3.9 3.4 4.3 4.0 3.9 4.2 4.2

K̃zx 4.4 3.6 4.5 4.1 3.9 4.2 4.2

K̃zz 5.4 5.2 5.8 5.8 5.8 6.3 6.2

Face C

Grid R8 R4 R2 R1 R0.5 IC IF

K̃xx 4.0 4.1 4.0 4.1 4.1 4.1 4.1

K̃xz 0.15 0.06 0.11 0.10 0.10 0.087 0.095

K̃zx 0.18 0.10 0.12 0.11 0.10 0.094 0.099

K̃zz 3.7 3.4 3.1 3.1 3.1 3.0 3.0

In table 1 the components of K̃ computed with different grids are listed.
The dominant components are the diagonal ones, especially for face C, for

which the off-diagonal terms are less than the diagonal values by more than one
order of magnitude: we can conclude that x and z-axis can be considered as the
principal axes of K̃.

The off-diagonal terms, K̃xz and K̃zx, are computed with eqn. (5) and show
differences which are less than 20% of the computed values for the coarsest grids
(R8), but become negligible for fine grids and for irregular grids. The difference
K̃xz − K̃zx is due to the approximations introduced in the solution of the balance
equation and in the computation of K̃ with eqn. (5), which does not explicitly
imply symmetry, and is an estimate of the uncertainties on the components of K̃ .

Table 1 also permits to draw some conclusions about the dependence of the
results on the grid spacings. For these tests the results obtained with the IFD
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method do not noticeably depend upon the refinement of the grid: both grids (IC
and IF) accurately reproduce the discontinuities between the facies, which is the
most important aspect; moreover, the differences between the results obtained with
IC and IF are small if compared with the differences between the sizes of the cells
of the grids (table 2). The surface of the cells of the regular grids varies between
64 cm2 (R8) and 0.25 cm2 (R0.5) and, as noticed before, the results are influenced
by the the size of the cells.

A direct comparison between the IC and IF is given in fig. 3, where a small area
of face C is represented as an example, whereas a more complete analysis of the
characteristics of the irregular grids can be found in table 2.

Figure 3: Comparison between the irregular grids IC (black) and IF (gray) in the
small area belonging to face C indicated by a square in fig. 2.

Fig. 3 shows that the coarse grid reproduces in a sufficiently accurate way the
boundary of the discontinuities but it is constituted by cells of irregular shapes and
noticeably different size from each other.

Quantitative information about the shape of the cells is given by a shape factor,
defined as σj = lj/rj , where lj is the diameter of the j-th cell and rj is the radius
of the inscribed circle. We have σ = 2 if the cell is round, σ = 2

√
2 for a square

cell, whereas higher values of σ characterize a cell with a more irregular shape.
In table 2 the maximum and the average values of the shape factor are given

for each irregular grid: in particular the values of the maximum and the standard
deviation are useful to assess the enhanced regularity of the fine grids with respect
to the coarse ones and the wide range of different shapes and sizes of the Voronoi
cells in comparison with the regular ones.

4 Conclusions

In [6] the following theorem is proven. Let the discrete balance equation (3)
be valid over a Voronoi diagram, with which a block is discretized to apply
an IFD model. Let h(r) be the solution to (3) if Dirichlet boundary conditions
are assigned so that the prescribed head is a linear function of xr . The block
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Table 2: Parameters of the irregular grids for both faces. In the last column average
and standard deviation of the shape factor σ are listed.

Grid Number of nodes maxj∈N0(Aj) (cm2) maxj∈N0(σj) σ

IC-A 503 68 34.1 5.8 ± 4.1

IF-A 752 35 18.1 3.8 ± 2.1

IC-C 1157 127 40.4 6.0 ± 4.2

IF-C 1685 18 12.6 4.1 ± 1.7

scale equivalent conductivity tensor computed from (1) is symmetric for any
conductivity distribution and for any shape of the block.

A local-numerical approach is adopted: the discrete balance equation is solved
on the fine grid with boundary conditions assigned at the border of each block and
the equivalent conductivity tensor is computed as the coefficient of proportionality
between the block averaged Darcy’s velocity and the block averaged hydraulic
gradient.

This result is obtained in [6] for the IFD method that is based on a balance
equation and permits to approximate the discontinuities between different zones
in a more accurate way than standard finite differences techniques.

The numerical tests show that, as expected from the theory, the equivalent
conductivity tensors that control the Darcian term of the block-averaged flux are
symmetric but for differences between off-diagonal terms due to approximation
and rounding errors in the computation of K̃.

Moreover, the IFD method is useful to model media which are the union of many
hydrofacies and permits the discretisation of the discontinuities between different
zones in a more accurate way than standard finite differences techniques which
cannot handle non-rectangular grid cells.

This work has been supported by the Italian Ministry for University and Scientific
Research (PRIN 2005) and the University of Milan within the project “Field and
numerical studies to model the sedimentary architecture and water flow in aquifer
systems of the Po plain at different scales” (principal investigator: M. Giudici).
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