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Abstract 

This paper deals with the free convective heat and mass transfer along a vertical 
wall embedded in a fluid saturated porous medium by using an integral method 
of the Von-Karman type in the presence of temperature and concentration 
gradients. Mathematical expressions for the local Nusselt number and local 
Sherwood number have been derived in terms of boundary layer thickness ratio. 
The governing parameters for the flow-field are buoyancy ratio (N) and Lewis 
number (Le). The numerical values of the local Nusselt number and local 
Sherwood number have been computed for a wide range of values of N and Le. 
The variations of local Nusselt number and local Sherwood number with N have 
also been studied with the help of graphs for the different values of Le. 
Similarly, the variations of local Nusselt number and local Sherwood number 
with Le have been studied for different values of N with the help of graphs.         
It has been found that the local Nusselt number increases as N increases for the 
decreasing value of Le, whereas the local Sherwood number increases as N 
increases for the increasing values of Le. The local Nusselt number and the local 
Sherwood number increase as Le increases for increasing values of N. The 
numerical values of the thermal boundary layer and concentration boundary layer 
thicknesses have also been computed for the flow-field. It has been found that 
the results obtained by the integral method are in good agreement with those 
obtained by Bejan and Khair [Heat and Mass Transfer by Natural Convection in 
a Porous medium, Int. J. Heat Mass Transfer, 28, pp. 909-918, 1985]. 
Keywords:  natural convection, porous media, heat and mass transfer. 
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1 Introduction 

The natural convection flows arising out of the combined buoyancies due to 
thermal and mass diffusion in a porous medium are of importance because of the 
fundamental nature of the problem and broad range of their applications 
pertaining to manufacturing and process industries such as geothermal systems, 
fibre and granular insulation, storage of nuclear waste materials, usage of porous 
conical bearings in lubrication technology, chemical catalytic reactors, dispersion 
of chemical contaminant through water saturated soil , natural gas storage tanks , 
etc.  
     On account of the afore-mentioned applications, Bejan and Khair [1] used the 
Darcy’s law to study the features of the free convection boundary layer flow 
driven by temperature and concentration gradients. Recently, Lai and Kulacki [2] 
have re-examined the free convection boundary layer along a vertical wall with 
constant heat and mass flux including the effect of wall injection. The heat and 
mass transfer by natural convection near a vertical wall in a porous medium 
under boundary layer approximations has been studied by Nakayama and 
Hossain [3] and Singh and Queeny [4]. A further review of coupled heat and 
mass transfer by natural convection in porous medium is given by Nield and 
Bejan [5].    
     The objective of the present paper is to apply integral method to analyze free 
convection problem along a vertical wall in the presence of temperature and 
concentration gradients.  A comparison of the numerical values of the local 
Nusselt and local Sherwood numbers obtained by the integral method has been 
done with those obtained by Bejan and Khair [1] for different values of the 
buoyancy ratio.  
     It has been found that the results obtained by the present method are in good 
agreement with those obtained by Bejan and Khair. 

2 Mathematical analysis 

We consider a two-dimensional laminar flow over a vertical flat plate in a porous 
medium embedded in a Darcian fluid. The co-ordinate system and the physical 
model are shown in figure 1. In the mathematical formulation of the problem, we 
note the following conventional assumptions:  

i) the physical properties are considered to be constant, except for the 
density term that is associated with the body force; 

ii) flow is sufficiently slow so that the convecting fluid and the porous 
matrix are in local thermodynamic equilibrium;    

iii) Darcy’s law, the Boussinesq and boundary layer approximations have 
been employed.  

     With these assumptions, the governing equations are given by   
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Figure 1: Physical model and co-
ordinate system. 

Figure 2: Heat transfer coefficient 
as a function of buoyancy 
ratio. 

 
The symbols have got their meanings as mentioned in the Nomenclature. 
     The boundary conditions at the wall are    

y  =  0 :  v  = 0 ,  T = Tw , C = Cw              (5) 

and at infinity are  

y→∞ ; u = 0 , T → T∞ ,  C→C∞       (6) 

3 Integral method     

The boundary layer equations (2)–(4) along with boundary conditions (5) and (6) 
have been solved by using integral method. The partial differential equations get 
converted into the ordinary differential equations by making use of the following 
transformations:  
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the stream function.  
     After transformation the resulting equations become  

f″(η) - θ′(η) – N φ′(η) = 0                (11) 

θ″(η) + ½ f(η) θ′( η) =   0                (12) 

φ″(η) + ( Le/2) f(η) φ′( η) = 0      (13) 

with boundary conditions 

f(0) = 0  ,  θ (0) = φ(0) = 1                        (14) 

f'(∞) = θ(∞) =  φ(∞) = 0                    (15) 

where primes denote the differentiation with respect to ‘η’,  η∈ [ 0, ∞ ). Here, 
f'(η) is non-dimensional velocity related to the stream function ψ(x,y).  
     In the above equations (11) – (13), N is the buoyancy ratio defined by 
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and Le is the Lewis number defined by    

Le = α / D            (17) 

From (12) and (13), we get 
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The infinity is boundary layer thickness for temperature and concentration. We 
now assume the exponential temperature and concentration profiles as follows:  

θ(η) = exp (- η/δT)                  (20) 

φ (η) = exp (- ξ η/δT)       (21) 

Here δT is arbitrary scale for the thermal boundary layer thickness whereas ξ is 
its ratio to the concentration boundary thickness δC. With the help of above 
profiles, and using equation (11), the equations (18) and (19) can be obtained in 
two distinct expressions as 
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The above two equations (22) and (23) can be combined together to give the 
following cubic equation for determining the boundary layer thickness ratio ξ  as 

ξ3 + ( 1 + 2N) ξ2 – [ (2 + N) Le ] ξ – N Le = 0               (24) 

As ξ is determined by using the computer programming like MATLAB from the 
equation (24), the local Nusselt and Sherwood numbers which are of our main 
interest in terms of heat and mass transfer respectively, are given as    
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The accuracy acquired in the above approximations may be examined by 
comparing the heat and mass transfer results against those obtained by Bejan and 
Khair [1]. It is not unusual to have an error of 5 % or more, depending on the 
assumed profile. However, the situation can be remedied by adjusting the 
multiplicative constant, namely, replacing 0.5 by 0.444. Thus, the following 
approximate formulae are proposed: 
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4 Results and discussions 

The formulae (27) and (28) give the values of the local Nusselt number (Nu) and 
Sherwood number (Sh) as 0.444 for N = 0 and Le = 1. These values are the same 
as obtained by Bejan and Khair [1]. The above assertion is clear from table 1. 
We have done calculations for a wide range of the parameters N (buoyancy ratio) 
and Le (Lewis number) in order to understand their influence on the combined 
heat and mass transfer along a vertical wall due to free convection. These values 
have been given in table 1. From the table, it is evident that the values of local 
Nu and Sh obtained by the integral method for different values of Le are in 
excellent agreement with those obtained by Bejan and Khair who obtained the 
corresponding values by the similarity solution technique. 
     From the table, it is clear that the thermal boundary layer thickness δT shows 
an increasing trend for N = 1, 4 for the increasing values of the Lewis number 
Le. On the contrary, the concentration boundary layer thickness δC shows a 
decreasing trend for N = 0, 1, 4 for the increasing values of Le. From the table, it 
is obvious that the Lewis number has more pronounced effect on the 
concentration field than it has on temperature field. From the table, it is further 
evident that the magnitudes of the thermal boundary layer and concentration 
boundary layer thicknesses are equal for N = 0, Le = 1; N = 1, Le = 1 and N = 4, 
Le =1. 
     The local Nusselt number has been plotted in figure 2 as a function of 
buoyancy ratio for various values of Lewis number (Le = 0.1, 1, 10, 100). It is 
found that the rate of heat transfer decreases with increasing Lewis number for N 
> 0. Similarly the local Sherwood number has been plotted in figure 3 against the 
buoyancy ratio N for various values of the Lewis number (Le = 1, 10, 50, 100). It 
is found that the rate of mass transfer increases with increasing Lewis number for 
all N.   
     The local Nusselt number has been plotted in figure 4 as a function of Lewis 
number for various values of buoyancy ratio N = 0, 2 and 4. It is found that the 
local Nusselt number decreases with increasing Lewis number for N > 0. 
Similarly the local Sherwood number is plotted in figure 5 as a function of Lewis 
number for various values of buoyancy ratio N = 0, 1 and 4. It is found that the 
local Sherwood number increases with increasing Lewis number for all N. From 
figures 4 and 5, also it is evident that the values of local Nusselt and local 
Sherwood numbers in the present case are in excellent agreement with those 
obtained by Bejan and Khair.  
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Table 1:  Comparison of Local Nusselt and Sherwood numbers. 

Nu/(Rax)1/2 Sh/(Rax)1/2 
N Le Numerical Present Numerical Present δT δC 
0 1 0.444 0.444 0.444 0.444 2 1 
 2 0.444 0.444 0.683 0.693 2 1.2807 
 4 0.444 0.444 1.019 1.053 2 0.8430 
 6 0.444 0.444 1.275 1.332 2 0.6666 
 8 0.444 0.444 1.491 1.568 1.9999 0.5663 
 10 0.444 0.444 1.680 1.776 2 0.5 
 100 0.444 0.444 5.544 6.061 2 0.1455 

1 1 0.628 0.628 0.628 0.628 1.4142 1.4142 
 2 0.593 0.591 0.930 0.937 1.5015 0.9478 
 4 0.559 0.557 1.358 1.383 1.5935 0.6418 
 6 0.541 0.539 1.685 1.728 1.6459 0.5138 
 8 0.529 0.528 1.960 2.019 1.6806 0.4395 
 10 0.521 0.520 2.202 2.276 1.7074 0.3901 
 100 0.470 0.4692 7.139 7.539 1.8733 0.1166 

4 1 0.992 0.992 0.992 0.992 0.8944 0.8944 
 2 0.899 0.896 1.431 1.436 0.9905 0.6180 
 4 0.793 0.797 2.055 2.017 1.1138 0.4284 
 6 0.742 0.743 2.533 2.562 1.1951 0.3464 
 8 0.707 0.707 2.936 2.976 1.2543 0.2979 
 10 0.681 0.681 3.290 3.341 1.3030 0.2657 
 100 0.521 0.519 10.521 10.792 1.6630 0.08 
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Figure 3: Mass transfer coefficient as a function of buoyancy ratio. 
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Figure 4: Heat transfer results. 
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Figure 5: Mass transfer results. 

5 Concluding remarks 

This paper deals with the free convective heat and mass transfer along a vertical 
wall embedded in a fluid saturated porous medium. The heat and mass transfer 
coefficients obtained in the present study by the integral method agree very well 
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with those obtained by Bejan and Khair.  In the present analysis, the results have 
been presented in such a way that any practicing engineer can easily obtain the 
physical characteristic of the problem for arbitrary values of the buoyancy ratio 
and Lewis number. The advantage of this method is that it also provides with 
great freedom the approximate solutions to non-linear problems. The further 
advantage of this method is that the results are obtained with more ease as 
compared to Bejan and Khair. 

Nomenclature 

N buoyancy ratio                              
T temperature                                   
C concentration                                
D mass diffusivity of porous 

medium        
f dimensionless stream function      
g gravitational acceleration              
h local heat transfer coefficient       
k thermal conductivity                     
K permeability                                  
Le Lewis number                               
Nu local Nusselt number                    
Sh local Sherwood number                
Rax  modified Rayleigh number  
u Darcy’s velocity in x- direction    
v Darcy’s velocity in y- direction    
x, y cartesian co-ordinate            
            

Greek Symbols    
α thermal diffusivity of porous 

medium 
η similarity variable 
βT coefficient of thermal expansion 
βC coefficient of concentration 

expansion 
δT arbitrary length scale for thermal 

boundary layer   
δC  arbitrary length scale for 

concentration boundary layer 
ψ stream function 
φ dimensionless concentration 
ξ boundary layer thickness ratio 
ν kinematic viscosity 
Subscripts 
∞ condition at the infinity   
w condition at the wall                         
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