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Abstract

There are several reasons for the fact that fracture flow has been a subject of
active research for the last three decades. Rock fractures commonly exist in the
Earth’s upper crust and, therefore, significantly control groundwater movement.
Fracture-dominated flow has become increasingly important in various problems
of geotechnical interest. A particularly important reason for investigating fracture
flow and contaminant transport is the necessity of building repositories of nuclear-
fuel waste which are often situated deep in granite massifs. The possibility of
their damage during the long periods of storage requires the study of problems
connected with the risk of possible contaminant displacement.

The aim of this article is to model water flow and contaminant transport in hard-
rock fractures. Such results are required that make it possible to determine the
hydraulic parameters of real fractures by comparison with data measurable under
field conditions.

Making use of the known hydromechanical characteristics of the modelled
fracture and the aqueous phase, a problem with a set of three partial differential
equations and related boundary conditions was formulated and numerically solved.
The unknown functions of the problem are the liquid-phase pressure, the flow
velocity and the contaminant concentration. The method of solution is described
and the achieved results are visualized and presented.

1 Introduction

The safety of deep repositories of spent nuclear fuel is a matter of great relevance
and importance. In the course of long duration storage, radionuclides can leach out
of their containers and spread into the surrounding host-rock materials. Prediction
of the rate of contaminants migration will depend on the hydraulic characteristics
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Figure 1: Dependence of probability of permeable fracture on percolation
probability for different numbers of sites.

of the fracture system and the sorption characteristics of migrants and the host-rock
material.

In order to successfully simulate the fracture flow of the aqueous phase, we need
to define the fracture geometry and to find a correspondence between the hydraulic
characteristics of the fracture and data measurable in situ.

There are several approaches to the problem of fracture-geometry description.
The variable aperture model is the most general one. The model incorporates
variable aperture within the fracture space and makes it possible to consider open
and closed regions of the fracture. The assignment of the aperture values is usually
done by means of geostatistical methods (Moreno et al. [9], Nordqvist et al. [11]).
The aperture values are then defined by an aperture probability distribution. Both
the normal distribution (Mourzenko et al. [10], Volik et al. [17]) and the lognormal
aperture distribution (Nordquist et al. [11], Ewing and Jaynes [3]) have been used.
Another approach to fracture geometry is an application of the percolation theory,
e.g. Stauffer and Aharony [15], Berkowitz [2], Renshaw [14]. The percolation
theory works with lattices formed of different elements (triangles in the present
case) and studies their statistics. For all the latices, each site (triangle) or bond
(common boundary of neighboring sites) is randomly occupied (open for aqueous
phase) with a given probability p or empty (closed) with probability 1 − p.
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According to the prescribed value p, the resulting fracture becomes permeable
or not permeable for the aqueous phase. After that, the proper value of fracture
permeability is modelled by means of aperture distribution.

Veselý and Mls [16] studied the influence of the fracture grid size on the relation
between the percolation probability p and the probability of the fracture to be
permeable. It was found that the increasing number of sites narrows the transition
zone of p between the impermeable and the permeable fracture. These results are
shown in Figure 1, where the percolation probabilities are depicted horizontally
and the probabilities of permeable fractures vertically.

The governing equation of the liquid-phase flow is the continuity equation
together with an equation defining the relation between the discharge density and
the gradients of pressure and geodetic head. The well known Hagen-Poiseuille
equation is generally used for this relation. The resulting equation is usually
called the Reynolds equation, e.g. Zimmerman et al. [18]. Ge [4] further extended
the Reynolds equation by incorporating tortuosity and the effect of the angle of
fracture walls. Konzuk and Kueper [8] pointed out that using locally held Hagen-
Poiseuille equation leads to overestimation of the fracture-flow rate by a factor
ranging from 1.3 to 1.9.

2 Equations of liquid-phase flow

The liquid-phase flow within the fracture space is governed by two basic laws. The
first one is the mass balance equation

σ d(x)
∂p

∂t
(x, t) +

∂qi

∂xi
(x, t) = 0 , (1)

where x = (x1, x2) are coordinates in the fracture plane, d is the aperture, σ
is specific storage of the fracture, p is the liquid-phase pressure, t is time, and
q = (q1, q2) is specific discharge of the liquid phase. This equation is accompanied
by the Hagen-Poiseuille equation

qi(x, t) = −d3(x)
12 µ

(
ρ g

∂z

∂xi
+

∂p

∂xi
(x, t)

)
, i = 1, 2, (2)

where z is vertically upward oriented coordinate, g is gravity acceleration, and µ
is the dynamic viscosity of the liquid phase. Putting these equations together, we
obtain second order partial differential equation

σ d(x)
∂p

∂t
(x, t) − ∂

∂xi

(
d3(x)
12 µ

(
ρ g

∂z

∂xi
+

∂p

∂xi
(x, t)

))
= 0 , (3)

Under the assumption of incompressible liquid phase, Equation (3) simplifies by
introducing hydraulic head u,

u(x, t) = z(x) +
p(x, t)

ρ g
. (4)
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Assuming further steady-state flow or zero value of specific storativity, Equations
(1) and (2) become

∂qi

∂xi
(x, t) = 0 , (5)

qi(x, t) = −ρ g d3(x)
12 µ

∂u

∂xi
(x, t) , i = 1, 2. (6)

3 Equations of solute transport in fractures

Let us consider a presence of a contaminant in the water within the fracture
space. Correct prediction of the contaminant movement depends on several
characteristics of the hydrogeological environment (e.g. fracture geometry,
discharge density) and the contaminant itself (e.g. solubility, sorptive binding).
Denoting c the contaminant concentration (mass of contaminant per volume of the
aqueous phase), the transport equation is

d(x)
∂c

∂t
(x, t) =

∂

∂xi

(
d(x)D

∂c

∂xi
(x, t) − c(x, t) qi(x, t)

) − 2
∂a

∂t
(x, t) , (7)

where D is coefficient of molecular diffusion and a is the mass of the contaminant
sorbed on unit surface of the solid phase. In most cases, isotherms of Langmuir
and Freundlich are used to asses the effects of the concentration on sorption, e.g.
Park and Hahn [12]. The Freundlich isotherm is

a = K cn (8)

and the Langmuir isotherm is

a =
K1 c

K2 c + 1
, (9)

where K, K1, K2, n are constants depending on the solid phase and the
contaminant in question.

4 Measured data

Measurements of real fracture apertures and asperities are difficult to obtain in
practice. It is even more complicated to obtain such data for deep laying fractures.
Hence, the inverse modelling is probably the most promising approach to this
problem.

Several laboratory measurements were performed and published aimed at
getting knowledge of real aperture and asperity sizes, e.g. Pyrak-Nolte et al. [13],
Hakami et al. [5], Hakami and Larsson [6]. For crystalline rock, it is possible to
conclude that the typical average apertures range from 10 to 600 micrometers.
The asperity sizes are in millimeters. According to the laboratory conditions of the
measurements, it may be expected that the asperity data are more reliable.
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A relatively well described fracture flow experiment was conducted at the Stripa
mine in Sweden (Abelin et al. [1]). The experiment took place in a granite massif
at the depth of 360 m in several excavated test drifts. Using a large-scale plastic
sheeting technique, a very detailed monitoring of water inflow was performed.
It was found that the water inflow rates ranged from 0.01 l m−1 h−1 to 0.06
l m−1 h−1 with one exception of 0.26 l m−1 h−1. The presence of tritium in
some locations and its absence in others indicated that there were several isolated
channels which led water down to the depth of 360 meters in less than 30 years
whereas most of the water had a longer residence time.

The obtained experimental data are of crucial importance when modelling the
fracture geometry. The parameters of the fracture generation must be determined
in such a way that the computed flow is in agreement with the measured values.

Knowledge of the process of contaminant transport through the real fraction
enables us to get further data for the fraction geometry calibration. Under the
assumption that the transport parameters of the migrant and the rock material are
known, particularly parameters of sorption and molecular diffusion, the fracture
geometry can be calibrated by reaching agreement between the measured and
computed values of the migrant concentration.

Geologic media may consist of variety of sorbing materials such as micas,
iron, silicate or manganese oxides, each with their own sorption preferences
for individual solutes and each with different sorption capacity. Park and Hahn
[12] investigated sorption and desorption of selected radionuclides on granite.
Particularly, the sorptive binding of 60Co, 85Sr and 137Cs on the Bulguksa granite
was studied. The obtained results enabled the authors to determine values of
the coefficients K, n and K1, K2 of Freundlich and Langmuir isotherms (8)
and (9). The Langmuir isotherm and the values K1 = 5.0 × 10−2 m3/Ci and
K2 = 4.63 × 10−4 m3/m2 of 137Cs were used in numerical solutions presented
below.

5 The mixed formulation of the flow equation

The transport equation (7) requires values of specific discharge q. Hence, the
systems of Equations (5) to (7) or (3), (2) and (7) must be solved in order to
obtain required value of concentration c(x, t). If the influence of c values upon
the phase density ρ is negligible, Equation (3) can be solved separately and the
parameter q can be obtained by means of Equation (2). It is well known that the
Rothe method and subsequently the Galerkin method are efficient when solving
initial-boundary value problems in Equation (3). Unfortunately, specific discharge
obtained in this way does not satisfy the requirements of Equation (7) which is
very sensitive namely to this parameter. The flow through individual bonds of
the applied lattice (balance between neighbouring elements) has to determined
with high level of accuracy. Consequently, it is necessary to reformulate the flow
problem in the following way, known as the mixed formulation, e.g. (Kaasschieter
and Huijben [7]). Starting with a boundary value problem in Equations (5)
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and (6) on a domain Ω, the mixed variational formulation is to find functions
(u,q) ∈ L2(Ω) × H∗(div, Ω) such that

∫
Ω

∂qi

∂xi
(x)ϕ(x) dx = 0 (10)

and

−
∫

Ω

12 µ

ρ g d3(x)
qi(x) vi(x) dx +

∫
Ω

u
∂vi

∂xi
(x) dx =

∫
ΓD

uD vi νi dS (11)

∀ϕ ∈ L2(Ω) and ∀v ∈ HN (div, Ω), where

H∗(div, Ω) = {(v1, v2); v1, v2 ∈ L2(Ω) ,
∂vi

∂xi
∈ L2(Ω), vi νi = qN on ΓN} ,

HN (div, Ω) = {(v1, v2); v1, v2 ∈ L2(Ω) ,
∂vi

∂xi
∈ L2(Ω), vi νi = 0 on ΓN} ,

(ν1, ν2) is the unit outward normal to Ω, ∂Ω = ΓD ∪ ΓN , and u = uD on ΓD and
qi νi = qN on ΓN are the imposed Dirichlet and Neumann boundary conditions
on ΓD and ΓN , respectively. Using further the Raviart-Thomas finite element
formulation and hybridizing the mixed method a system of linear equations
is formulated which has symmetric positive-definite matrix, (Kaasschieter and
Huijben [6]). The values of specific discharge q obtained in this way satisfy the
requirements of the transport equation. Having obtained functions q1, q2, initial-
boundary value problems in Equation (7) can be solved by means of the Rothe
method.

6 Numerical solution

A fracture was generated using the above method based on the percolation theory
approach. Making use of the defined fracture parameters, several flow problems
were numerically solved. For the obtained specific discharge values, several
transport problems were solved separately. S-curves were modelled by imposing
proper initial and boundary conditions. The reason for this choice was that s-curves
reflect the most common tracer experiments. Different values of the flow rate were
obtained by changing the slope of the fracture. Fig. 2 shows the response: s-curves
1, 2, and 3 were obtained for the same fracture and for slopes of π/3, π/4 and π/6,
respectively.

The influence of concentration and aperture values on the sorption process is
shown in Figure 3. Two different values of mean aperture (5×10−5 and 5×10−4)
and two different values of concentration (0.2 Ci/m3 and 1.5 Ci/m3) were chosen
and the computations were carried out for their combinations. The differences
between the resulting s-curves demonstrate the sensitivity. Curves 2 and 4 were
obtained with the lower asperity. The specific discharge was kept unchanged.
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Figure 2: Dependence of the outflow concentration on time for three different
values of specific discharge.

Figure 3: Dependence of the outflow concentration on time for different values of
aperture and inflow concentration.
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