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Abstract

The purpose of this paper is to simulate a laminar mud flow confined in a
narrow rectangular open channel. The flow bed is an erodible layer made up
of the same material involved in the flow; the equilibrium condition between
the moving and non-moving layer is assumed. The mud mixture under study is
ruled by the Herschel–Bulkley’s (H–B) shear thickening rheological law. It is
supposed that the local volumetric concentration is linearly increasing with the
depth and it is constantly equal to its maximum value where the local velocity
is smaller than a threshold value. Relations among rheological parameters and
concentration have been obtained through laboratory rheometric tests. Turbulence
effects and Coulombian stresses have been ignored. The momentum equation has
to be integrated along the flow cross section for the flow velocity to be obtained.
Unfortunately, it is very difficult to integrate this equation using H–B rheological
law, since there are different stress functions and it is not possible to know a priori
the sub-domains of them (plug, non-plug and bed regions). In the present work
a modified rheological law, continuous over the whole domain of integration is
employed and the momentum equation is numerically integrated. This modified
law has been obtained by adding a constant correcting the denominator in the H–B
stress functions. Therefore, there are no longer any dead zones or plug regions.
However it is noteworthy that, using a small constant, the model produces a
good simulation of plug and dead zones: i.e. the velocity gradient is very small
there. The mathematical model has two parameters: maximum concentration and
threshold velocity. These parameters have been adjusted by back-analysis with
measurements from laboratory flume experiments in uniform flow conditions.
Keywords: mud flow, Herschel–Bulkley rheological law, equilibrium, plug.
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1 Introduction

Mud flows are very dangerous for anthropic settlements and so, during the last
years, they have been widely studied in environmental engineering. Mud flow is
characterized by motion of a two-phase mixture, consisting of water and high-
concentrated fine-granulometry solid matter; therefore, its mechanical behavior
is solid-like while the acting shear stresses are smaller than a fixed yield stress,
and it is similar to a non-Newtonian fluid when the acting stresses are bigger.
Researcher aim at obtaining a resistance law correlating the flow rate and the flow
depth, taking into account both the natural mixtures and irregular-shape flow cross
sections.

The present work presents a computational model to study the mud flow
under some simplifying hypotheses. The numerical computation was performed
in MATlab environment, by implementing a finite-difference method.

2 Constitutive law and definitions

There are two ways to approach the mechanical problem;

1. considering independently solid and liquid phases
2. using an equivalent fluid model with a rheological law, which, taking into

account all the modes of resistance inside the mixture, relates the shear
stress τ with the shear rate γ̇.

In this work the problem is tackled according to the second approach, i.e. a
rheological law, where parameters depend on the local volumetric concentration
of solid matter, has been used. The mixture ability to support shear stress depends
on the relative distance existing between solid particles and, consequently, on the
solid concentration.

The motion, under study, takes place in a rectangular-shaped open channel.
Uniform and laminar conditions have been assumed: that means the velocity is
a scalar function defined over the flow cross section. The motion develops on
erodible layer, consisting of the same solid matter which is in the mixture, and
in equilibrium condition: there is a dynamic equilibrium between solid deposit
and particles at motion inside the flow. Therefore, at equilibrium there is a zone,
called dead zone, where solid matter is at rest. To tell the cross section sub-domain,
where velocity is non-null, from the whole cross section, the first one will be
called “active cross section” and the other one simply “cross section”. The velocity
function, in equilibrium condition, is marked out by null gradient at the boundary,
between active flow cross section and dead zone.

The following anticlockwise system of axes has been assumed as reference
frame: the x axis is parallel to the motion direction and so it is perpendicular to the
cross section, y is perpendicular to the erodible bed and it lies on the cross section,
z is parallel to the absolute bed plane and it lies on the cross section.

A scheme of the channel and the reference frame is reported in fig. 1.
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Figure 1: View of xy plane, z-axis is perpendicular to the sheet. It is shown that
usually erodible layer slope is different from flume bed slope. The dashed
line represents the cross section.

The mixture considered is ruled by Herschel–Bulkley’s law, which presents the
following one-dimensional form:

τ = τB + µ

(
du

dn

)η

if τ > τB (1)

du

dn
= 0 if τ ≤ τB (2)

where u is the velocity, τ the shear stress, τB the yield stress, µ the apparent
viscosity. The second form is due to the fact that, when acting stress is smaller
than yield stress, the behavior of mixture is solid-like.

In steady conditions, everywhere the acting shear stress is equal to the resistant
one.

The general expression of H–B’s law [1], valid for three-dimensional problems,
is the following one:

T− pI =
τBD√−DII

+
2ηµD√
−D1−η

II

if τ > τB (3)

D = 0 if τ ≤ τB (4)

where T is the stress tensor, I the unit tensor, D the strain rate tensor, DII the
second invariant of the secular equation associated with tensor D.

There are two different rheological forms: the second one postulating that,
where acting stress is smaller than yield stress τB , there is no strain, i.e. the whole
shear stress is supported by the solid matter. The presence of a plug region, where
the velocity vector is constant, set on the top of the flow, close to the free surface,
is a direct consequence of the above.

Fig. 2, reproduced from [2], shows an example of a typical velocity distribution,
where dead and plug zones can be seen.
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Figure 2: Velocity distribution, observed in laboratory flume experiments: dead
and plug zones are evident. [2].

Rheological parameters τB and µ strongly depend on the local concentration,
but η is only dependent on the chemical-physical nature of the solid suspension.
For solid matter used in laboratory flume experiments, coming from the area of
Sarno (Italy), the following fitting forms have been obtained, through rheometric
tests:

τB = 0.0589 · e12.071·c, µ = 0.0020 · e9.382·c, η = 1.722 (5)

where c is the local volumetric concentration. This dependence is exponential,
therefore a good estimation of c is essential.

In this paper three kinds of concentration have been used: volumetric
local concentration c, mean concentration cm over the cross section and flow
concentration ct. They are defined in the following expressions:

c(x) := lim
V →0

Vs

Vs + Vw
, cm :=

∫
Ω

c(x) dA

Ω
, ct :=

∫
Ω

c(x)u(x) · n̂ dA∫
Ω

u(x) · n̂ dA

(6)

where Vs the volume taken up by the solid suspension, Vw the volume of water.
Ω is the cross section domain, u(x) the velocity at x point, n̂ the unit vector normal
to the cross section.

The local concentration is defined over the whole section, whereas the mean
concentration and the flow concentration are features of the entire motion. The
flow concentration means also the ratio between the solid flow rate and the total
one.

Projecting on x-axis eqn (3), the following expressions have been obtained:

τyx =

τB + µ

[(
∂u

∂y

)2

+
(

∂u

∂z

)2
] η

2

√√√√[(
∂u

∂y

)2

+
(

∂u

∂z

)2
] ∂u

∂y
(7)
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τzx =

τB + µ

[(
∂u

∂y

)2

+
(

∂u

∂z

)2
] η

2

√√√√[(
∂u

∂y

)2

+
(

∂u

∂z

)2
] ∂u

∂z
, (8)

where τzx is the x-axis component of the shear stress vector, acting on the surface
with normal z, and similarly τyx is the x-axis component of the one, acting on the
surface with normal y.

3 Differential problem

Momentum equation, valid everywhere over the cross section domain, can be
written as:

ρ (g − u̇) = ∇ ·T (9)

where u̇ is the Lagrangian acceleration and g the gravity constant.
The x-axis component of eqn (9) can be written as follows:

ρg sin θ +
∂τzx

∂z
+

∂τyx

∂y
= 0, (10)

where ρ is the mean density (ρ = c ρsolid +(1 − c) ρwater) and θ is the flow slope,
usually different from that of non-erodible layer, which lies below.

If velocity boundary conditions and local concentration distribution were
known, since functions τzx and τyx depend on u because of eqns (7) and (8), it
would be possible to solve numerically the differential problem, associated to eqn
(10), for the only function u(y, z).

The domain of integration was a reference cross section, arbitrarily chosen in
the whole flume. It is assumed that solution does not vary with total flow depth, if
Coulombian stresses can be ignored.

3.1 Corrective term ε2

The main difficulty in integrating eqn (10) derives from its being a free-boundary
problem: the size of plug sub-domain and the velocity value in the plug cannot
be a priori fixed. Besides, eqn (10) is not defined in the plug. To overcome the
problem, the functions (7) and (8) were replaced by the following ones, which are
defined and continuous over the whole cross section:

τyx =

τB + µ

[(
∂u

∂y

)2

+
(

∂u

∂z

)2
] η

2

√√√√[
ε2 +

(
∂u

∂y

)2

+
(

∂u

∂z

)2
] ∂u

∂y
(11)
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τzx =

τB + µ

[(
∂u

∂y

)2

+
(

∂u

∂z

)2
] η

2

√√√√[
ε2 +

(
∂u

∂y

)2

+
(

∂u

∂z

)2
] ∂u

∂z
. (12)

The critical effect, due to the ε2, is the absence of yield stress, therefore there
are not dead or plug zones any more [3]. The constant ε2 should be as small as
possible, for a Bingham fluid in [4] a value smaller than 10−16 is recommended.
Obviously, the smaller is ε2, the closer come the expressions (11) and (12) to the
original H–B’s law and the more the u solution will have a zone, where the velocity
is almost null with its gradient, and a zone with almost constant velocity. In this
paper it has been used an ε2 = 10−3.

3.2 Concentration distribution

Unfortunately, it is not yet possible to obtain a reliable estimation of local
concentration c through experimental measures, therefore hypotheses about it
should be formulated. Undoubtedly, c is increasing with the depth and there are
some experimental results that confirm a nearly linear trend of c at solid boundary
[5]. A good estimation of c is essential, since rheological parameters depend on it.

In this work following hypotheses have been assumed:
• concentration linearly increasing with the depth: c = c0 + k y;
• existence of a maximum packing value of concentration cmax, independent

of parameters of motion which vary from case to case (e.g. slope, cm);
• existence of a threshold value of velocity uthr, under which concentration

is equal to maximum packing value.
Values between [0.66 − 0.69] for cmax and between

[
10−4 − 10−3 m/s

]
for

uthr were tried.

3.3 Boundary conditions

The following boundary conditions have been assumed:
• no-slip condition, that is null velocity everywhere at solid boundaries of

channel;
• null shear stress at free surface.

The model could be tested also in slip condition at side solid border, which
seems to be more realistic, but it is very difficult to obtain a reliable experimental
estimation of velocity there.

4 Numerical implementation

A finite-difference discretization of differential problem was performed. First-
order derivative of u in eqns (11) and (12) were replaced by their central
approximations.
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The integration domain was discretized in rectangular-shaped cells, of size ∆z×
∆y. Continuous functions u, ρ become discrete functions, pertinent to the centre
of gravity of cells. Therefore they have been implemented as matrices. Similarly
functions τyx and τzx are implemented as matrices, with the following convention:
τzx(i, j) is the shear stress acting over the right-hand side of the cell (i, j), and
τyx(i, j) is the shear stress acting over the lower side of the cell (i, j). Stresses are
regarded as positive when concordant with x-axis.

A scheme of conventions about τ stresses is reported in fig. 3.
Therefore, instead of a momentum equation, a forces balance can be written for

the generic cell (i, j):

[gρ(i, j) sin θ] + [τzx(i, j) − τzx(i, j − 1)] /∆z+

[τyx(i, j) − τyx(i − 1, j)] /∆y = 0. (13)

Figure 3: The convention assumed for τ stresses.

There are as many equations as are the cells, and so, as are unknown variables
u(i, j). A 64 × 64 cells discretization has been used: the differential problem
has been changed in a non-linear system of 4096 equations. Boundary conditions
have been implemented, by using ghost null values of u at solid boundary and by
imposing τyx = 0 at free surface.

To solve the non-linear system, it was used “Fsolve”, which is a trust-region
algorithm, included in Optimization Toolbox [6]. Solution tolerance was set to
10−6. To improve performances, the symmetry of the problem was exploited (for
the non-linear system to have only 2048 equations) and it was used a pattern
matrix, which informs the computer about zeros, in order to obtain a faster
computation of Jacobian matrix.

4.1 Loops to define c matrix and convergence of algorithm

Every time the algorithm solves the differential problem, a guessing distribution
of c is assumed. The computation finishes when the solution is congruent with its
distribution of c. It is possible to state two different congruence conditions:
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• “threshold velocity condition”, which is verified when the velocity solution
is smaller than threshold velocity in cells where c = cmax and only in them;

• “flow concentration condition”, which is verified when cf , calculated since
the differential problem for u has been solved, is equal to cf to simulate.

The second condition is used to assure that the specific motion observed in
laboratory flume experiments is simulated and not any other.

Outside of the code which solves the differential problem, there are two nested
do-while loops, responsible to verify the congruence conditions: the outer one is
pertinent to the “flow concentration condition”, the inner one to the “threshold
velocity condition”. The hypothesis that cm is constant in every columns of the
cross section is assumed. Therefore, to fix a local concentration distribution, there
are n + 1 freedom degrees, where n is the number of columns (in the case of this
work 64): a degree is cm and the n others ones are the packing positions in each
column, i.e. the positions where c becomes equal to its maximum value cmax.

The flowchart of algorithm is reported in fig. 4.
Having obtained the u solution, the flow rate Q, which is useful for the analysis

of results, has been calculated.

Figure 4: Algorithm flowchart.
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Due to loops outside of differential problem, which can be regarded as Turing-
computable functions but not analytical, it is very difficult to obtain a strict proof of
convergence, by using spectral methods. An heuristic way has been tackled: it has
been observed that even increasing the discretization level (up to 160 × 160 cells)
the solution weakly changes. Furthermore, the solution seems to be independent
of first guessing concentration distribution [7].

5 Analysis of results and conclusions

Velocity and local concentration distributions, obtained by the simulation, are
reported in fig. 5. There is a discontinuity of the first type in c distribution: it
is, of course, a loophole of the model, on which future studies will be focused.

Figure 5: Velocity and local concentration distributions obtained by the simulation:
constant velocity zones are highlighted.

Although a modified rheological law with a rather big value of ε2 (10−3) has
been used, a velocity distribution with well defined dead and plug zones can be
easily seen (fig. 5): in other words, the integration method seems to be suitable for
this kind of problems.

The expected boundary points of plug and dead zones, for the generic column
j, occur when the total shear stress is equal to the yield stress:√

τ2
yx + τ2

zx = τB(c). (14)

It is very interesting, now, to compare boundary points of constant velocity
zones, which can be observed in velocity distribution after simulation, with the
expected boundary points, for each column of integration. The remarkable result
of this work is that, everywhere in the integration domain, one can notice an
encouraging correspondence between these points. Fig. 6 reports the comparison
at middle column of the flume. That is a further confirmation that this modified-
rheology numerical method seem to be working, even with high values of
constant ε2.
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Figure 6: Comparison among total stress, yield stress, velocity distribution and
local concentration.

The model needs two parameters, cmax and uthr, not yet obtainable by direct
measurements. So they have to be fixed, by a back-analysis of some laboratory
flume experiments.

In future research simulated flow rates with experimental measures will be
compared and the condition of threshold velocity will be improved, with the
contribution of further experimental results. Moreover, it will be interesting to
run the model in slip condition at solid boundary and, hopefully, to implement
Coulombian stresses, which seem to be not totally negligible in the dead zones.
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