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Abstract 

Pipeline-risers systems are frequently encountered in the petroleum industry, 
especially in the offshore platforms. Single-phase flow does not involve 
significant troubles in the operations through these arrangements.  However, 
during multiphase flow, flooding of the separation facilities could be expected 
due to the generation of severe slugs at the bottom of the riser. The size and 
frequency of the slugs are functions of the accumulation and displacement of 
liquid at the base of the riser and can be controlled with an adequate model. An 
improved transient model is presented to simulate severe slugging phenomenon 
in pipeline-risers systems. Gas penetration is described thoroughly since the first 
bubble penetrates into the riser until it reaches the top of it. The model presents 
improvements in the characteristics method applications including a correction 
for the gas density deviation caused by the nonfixed space-time resolution during 
the gas penetration. The results were compared with experimental data and 
previous models showing better accuracy. The model can be used to design new 
pipeline riser-systems or to adjust the operation of existing systems to prevent 
the occurrence of severe slug flow. 
Keywords:  two-phase flow, pipeline-risers systems, transient model, severe 
slugging. 

1 Introduction 

Severe Slugging process is well known for disturbing operations in pipeline-
risers systems due to the production of long liquid slugs in a short period of time, 
causing flooding of the separation facilities downstream. It occurs when the 
liquid and gas superficial velocities are relatively low to maintain stratified flow 
in the pipeline. Once the liquid intends to climb through the riser, the gravity 

 © 2007 WIT PressWIT Transactions on Engineering Sciences, Vol 56,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Computational Methods in Multiphase Flow IV  39

doi:10.2495/MPF070051



force makes difficult the continuity of the process and breaks the steady state 
condition. Since this moment, accumulation liquid process starts at the bottom of 
the riser until the gas pressure upstream becomes greater enough. Therefore, this 
pressure not only overcomes but also penetrates the liquid head, causing the 
displacement and production of the liquid accumulated in form of severe slugs. 
The pressure upstream decreases due to gas expansion until it is not enough to 
hold the remaining liquid in the riser that fall in order to start a new liquid 
process accumulation. Thus, the production operations remain in an unsteady 
state or transient conditions. 
     The severe slugging process has been previously studied. Schmidt et al. [1] 
described the process in four-step cycle as follows: slug formation, slug 
movement (production into the separator), blow out and liquid fall back. Taitel et 
al. [2] presented a model to describe the physical phenomenona but the results 
were not accurately when compared with experimental data due to the 
unsatisfied gas continuity in the riser. Fabre et al. [3] developed a model based 
on the continuous gas penetration through the riser and did not consider the slug 
formation blocking the gas passage. The model was not able to simulate certain 
specifics conditions obtained in their own experimental facilities. Sarica and 
Shoham [4] presented a simplified transient model to describe the phenomenona 
physically. The simulation of the slug generation, slug production and liquid fall 
back showed better accuracy than above mentioned models. It is important to 
remark that the model did not present a procedure to describe the gas penetration 
into the riser resulting in a cycle time period shorter than experimental data.  
     This paper presents an improved two-phase transient model to simulate severe 
slugging phenomenon in pipeline-risers systems where the four-step cycle are 
described physically. An algorithm is proposed to simulate the gas penetration 
step, which is considered the most complex. It includes a procedure to correct the 
gas density deviation caused by the nature of the characteristic method. The 
model predicts accurately the time period of the cycle along with other variables, 
which are very important to design separation facilities or to adjust operations in 
order to ovoid humans and economics risks. The results were compared with 
Sarica’s model [4] showing better performance to simulate the experimental data 
measured by Fabre et al. [3].  

2 Model description 

In order to simulate the four-step cycle described previously the continuity and 
momentum equations are formulated for each step of the cycle. The development 
of the model is based on one-dimensional analysis where the gravity domains 
and wall shear stress is neglected. This approach can be improved in near future 
studies when more experimental data become available to simulate highly 
viscous liquids.  

2.1 Equations during the slug generation step 

The continuity equation for liquid and gas are formulated for this step 
considering the pipeline void fraction αP as constant. The fig. 1 shows the slug 
generation process.  
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Figure 1: Slug generation process. 
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Figure 2: Slug production process. 

Taking the pipeline as a volume, control the liquid and gas continuity equations 
along with the combined momentum equation for this step are respectively:  

dt
dxvv Po,LSpen,LS α−=                                      (1) 

( )[ ]
dt

PxLdPv P
Poo,GS

−
= α                                 (2) 

( ) gsinxZPP LLsepP ρθ−+=                             (3) 

2.2 Equations during slug production step 

In this step, the liquid level in the riser ZL has reached the separator and remains 
constant as shown in the fig. 2. 
     Thus, eqn. (3) can now be written as follows:  

( ) gsinxhPP LrisersepP ρθ−+=                             (4) 
Eqns. (2) and (4) can be solved simultaneously, in order to calculate the liquid 
length and the pressure in the pipeline x and PP respectively. The slug flow rate 
production into the separator can be calculated with eqn. (1) since the liquid is 
incompressible. 
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q =                                               (5) 

2.3 Equations during gas penetration step 

Once the liquid length in the pipe line x is zero from the set of equations 
presented above, the gas penetration takes place as shown in the fig. 3a.  
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Figure 3: Gas penetration process. 

The boundary conditions at the base of the riser can be obtained from the 
continuity equations in the pipeline given by 

LSopen,LS vv =                                               (6) 







 −=

dt
dPLPv

P
1v P

Poo,GS
P

pen,GS α                            (7) 

Another boundary needed to solve the problem is located at the position of the 
first bubble that penetrates into the riser Zj. 
     In this step, the system variables P, αr, ρG, vLS and vGS in the riser are 
functions of both time and space, while in the pipeline they continue being only 
function of time. This is due to the no uniformity of the gas void fraction in the 
riser αr and the hydrostatic pressure.  
     The continuities for the liquid and gas respectively, and combined momentum 
equations are formulated for a riser differential control volume shown in the fig. 
3b, and these are: 

( )
0

z
v

t
1 LSr =

∂
∂

+
∂
−∂ α

                                       (8) 
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+
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Eqns. (8)–(10) have five unknowns, namely, P, αr, ρG, vLS and vGS  for each 
control volume position Zi. To close the model, two additional equations are 
needed. Assuming ideal gas behavior one equation would be: 

G

G

M
RT

P
ρ

=                                            (11) 

Another equation can be obtained from the drift flux formulation for the flow in 
the riser given by Zuber and Findlay [5] which is used to obtain the gas void 
fraction in terms of superficial phase velocities: 

( ) oLSGSo
r

GS vvvcv
++=

α
                             (12) 

where vo = 0.35 gd  and represents the bubble-rise velocity in stagnant liquid. 

2.4 Equation during gas blowdown 

It occurs since the first gas bubble reaches the top of the riser as shown in the fig. 
4. The pipeline pressure decreases drastically in this step until it is not enough to 
push the thin liquid film remaining in the pipe wall into the separator, causing an 
instantaneous liquid fall to begin the cycle again. The set of eqns. (8)–(12) can 
be used to solve the five unknown in this step. 
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Figure 4: Gas blowdown process. 

3 Characteristic method in the gas penetration step 

In order to calculate ρG and αr during the gas penetration step, an initial-value 
problem with a free boundary is formulated and solved with the characteristic 
method. This method consists to reduce two partial differentials equations into 
one ordinary differential equation, where characteristic conditions are satisfied. 
Thus, eqns. (8) and (9) were reduced to the following ordinary differential 
equation (see appendix A for details), 

( ) 0
Dt

D
C1

Dt
D G

or
G

rr =−+
ρ

α
ρ
αα

                           (13) 
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Solving this ordinary differential equation, the following constant is obtained 

( )1C
k

ro

rG

−
=

α
αρ

                                        (14) 

along with the characteristic:             

Gv
dt
dz

=                                             (15) 

Eqns. (14) and (15) replace the differentials eqns. (8) and (9) to calculate ρG and 
αr as it will be shown in the algorithm furthermore. 

4 Velocities in the gas penetration step 

vLS and vGS are obtained from the same differentials equations (8) and (9), but 
now through the finite-difference method. Addition of the two mentioned 
equations gives the following relationship (see appendix A.1 and A.2 for details): 
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                      (16) 

Substituting eqn. (12) into eqn. (16) the gas superficial velocity is given by 
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Finally, liquid superficial velocity is obtained from eqn. (12). 

5 Correction of the gas deviation 

For each time-step, the coordinate frame in the riser is different due to the nature 
of the characteristic method. Analysing eqn. (15), it is obtained ∆z = vG∆t, where 
∆t is established previously as constant and vG increases for each time-step due to 
the gas expansion. As a result, ∆z is different for each time-step as shown in the 
fig. 5 for t5 and t6. 
     As a consequence of the nonfixed space-time resolution, a gas density 
deviation is presented in the eqn. (17) which is formulated under finite-difference 
method criteria and requires the gas density in the previous time-step, staying in 
the same position respect to z which does not keep constant. The fig. 6, illustrates 
better this case. 
     This happens for all the points during the grid resolution. The correction 
proposed in this paper is based on the density average between the two closest 
points e.g. (3,5) and (4,5), around the correct point in the previous step-time, 
during the grid resolution. This is shown in the algorithm furthermore. 
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Figure 5: Characteristic method illustrated. 
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Figure 6: Error presented taking the gas density in the previous time-step, 
staying in the same position respect to z. 

6 Algorithm proposed to simulate gas penetration step 

When the gas is about to penetrate into the riser, the conditions can be 
determined. Considering i as space counter and j as time counter. 
 
Initial conditions [i=1(the riser base), j=1(t=0)] 
1. vLSo, vGSo and Po are given and αP is calculated with any stratified flow 

model. 
2. z(1,1)=0, this means the first gas bubble is in the riser base at t=0. 
3. P(1,1) and ρG(1,1)   are calculated from eqns. (10) and (11). 
4. vLS(1,1) and vGS(1,1) are then calculated from eqns. (6) and (7), dPp/dt = 0. 
5. αr(1,1) is calculated from eqn. (12). 
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Figure 7: Algorithm proposed to solve the gas penetration step by the 
characteristic method. 

6. K1 is obtained from eqn. (14) and will remain constant for the first gas 
bubble along the time. 

7. ∆z(1,1) is calculated from eqn. (15) with an arbitrary ∆t established 
previously. 

8. z(2,2) is calculated with z(1,1)+ ∆z(1,1). This is the first gas bubble position 
in t+ ∆t and represents the second point of the curve described for the first 
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bubble on which the solution of the ordinary differential equation k1 is 
satisfied. 

9. z(1,2)=0 is established. This means there is another bubble about to 
penetrate into the riser at t+ ∆t. 

 
For the next step time (t+ ∆t) follow the algorithm shown in the fig.7 

7 Comparison of experimental and numerical results 

The numerical results were compared with experimental data of Fabre et al. [3] 
and Sarica and Shoham [4] model. The data was taking in a laboratory-scale 
flow loop made of 0.053-m-ID transparent polyvinyl pipes. The air/water 
mixture flowed through a 25-m-long inclined pipeline with an angle of -0.57º, 
and 13.5-m-long vertical riser. The inlet flow conditions were vLSo = 0.13 m/s 
and vGSo = 0.20 m/s. For the gas, the velocity was calculated from the mass flow 
rate using the density at 20ºC and 100 kPa. The Sarica and Shoham [4] model 
was chosen for the comparation because it showed better approximation than the 
existences models at the moment. The fig. 9 shows the pressure pipeline vs. time 
in the four-step cycle of severe slugging. Pressure increase corresponds to the 
slug generation step. Then, the pressure is maintained due to the slug production 
and finally the pressure decreases due to the gas penetration and gas blow down 
steps. The same figure compares the results and it can be seen clearly that the 
two models present good agreement in the slug generation and slug production 
according to the pipeline pressure. However, there is remarkable difference in 
the prediction of the gas penetration step due to the rigorous procedure followed 
through the present model. Finally, the model with the correction of the gas 
density shows better agreement than the Sarica and Shoham [4] model. 
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Figure 8: Correction proposed for the gas deviation. 
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Figure 9: Transient simulation of the pipeline pressure during the severe 
slugging cycle. 

8 Conclusions 

a. An important contribution has been achieved for transient simulations of 
two phase flow. 

b. A thoroughly algorithm is proposed to simulate transient conditions for the 
gas penetration step in the severe slugging cycle. 

c. Even though the characteristic method is a powerful numerical tool to solve 
initial-value problems with free-boundary in transient conditions, it requires 
a correction for the gas deviation generated for the nonfixed space-time 
resolution. 

d. A correction for the characteristic method is proposed in order to simulate 
the gas penetration step in transient conditions. 

e. It has been shown the good agreement of the model when compared with 
experimental data and Sarica and Shoham [4] model. 

f. The four-step severe slugging cycle has been explained physically. 

9 Recommendations 

1. Future studies can adequate the algorithm and the correction proposed for 
terrain slugging where the riser is not completely vertical. 

2. The wall shear stress can be incorporated to the model proposed in order to 
simulate highly viscous liquids in either severe or terrain slugging cycle. 
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Nomenclature 

vLS and vGS = liquid and gas superficial velocities, m/s 
vLSo and vGSo = liquid and gas superficial velocities at the pipeline inlet, m/s 
ρL and ρG = liquid and gas densities, kg/m3 

αp and αr = pipeline and riser gas void fraction 
L = pipeline length, m 
t = time, second 
g = acceleration of gravity, m/s2 
R = universal gas constant, 8314.5 Nm/kmol K 
MG = gas molecular mass, kg/Kmol 
T = temperature, K 
d = diameter, m 
Co = distribution coefficient, 1.2. 
PP = pipeline pressure, Pa 
x = coordinate used to measure the liquid length in the pipeline, m 
ZL = coordinate used to measure the liquid level in the riser, m 
Zj= coordinate used to measure the first gas bubble into the riser, m 
Zi = coordinate used to measure the riser differential control volume, m  
Pi = pressure in a riser point at the coordinate Zi , Pa 
qL = liquid flow rate into the separator, m3/s 
AT = pipe transversal area, m2 

Appendix 

Rearranging eqn. (9) gives 
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Combining eqns.  (8) and (A1) yields 
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Substituting eqn. (12) in eqn. (A2), the following expression is obtained 
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According to the following operator 
( ) ( ) ( )
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If 

                                                        Gv
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dz

=                                            (A5) 

the terms in the square bracket in eqn. (A3) can be rewritten and eqn. (A3) yields 
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( ) 0
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                         (A6) 

This ordinary differential equation is satisfied along the characteristic direction 
defined by eqn. (A.5) 
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