
Determination of frequency and temperature 
dependent mechanical material properties by 
means of an Inverse Method 

J. Ilg, S. J. Rupitsch & R. Lerch 
Chair of Sensor Technology, Friedrich-Alexander-University,  
Erlangen-Nuremberg, Germany 

Abstract 

We present a method to determine the frequency as well as the temperature 
dependence of mechanical material parameters. In general, we apply a so-called 
Inverse Method that adapts simulation results to match the best possible 
measurements. The variable quantities within the simulation are the sought-after 
material parameters, namely the elasticity modulus, Poisson’s ratio, and a 
damping factor. Measurements are carried out by applying forced mechanical 
vibrations over a wide frequency range from quasi static up to more than 5 kHz. 
In particular, an electromechanical shaker harmonically excites tensile or 
bending vibrations of clamped plates and cylindrically shaped specimens. Two 
Laser Doppler vibrometers measure the vibration right next to the clamping and 
at the free end of the specimen, yielding a frequency dependent transfer function 
by relating the two measurands. Since the experimental setup is built up within 
an environmental chamber, temperatures from -40 to 150°C can be applied. 
Based on the experiment and the actual measuring points, a finite element (FE) 
analysis is performed to simulate the transfer function. Finally, the Inverse 
Method iteratively adapts the sought-after material parameters in such a 
convenient way that the simulated transfer function matches the measured one. 
The presented method was utilized to investigate the frequency and temperature 
dependence of different material classes: silicon rubber, plastics, metals, 
ceramics, and glass fibre reinforced plastics. In order to quantify and compare 
the dynamic material behaviour, functional relations of elasticity 
modulus/damping factor versus temperature are determined. 
Keywords: elasticity modulus, damping factor, forced vibration testing, 
frequency dependence, temperature dependence, mechanical material 
properties. 
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1 Introduction 

The development and design of every technical device demands for reliable 
material parameters of all involved materials. First and foremost, the parameters 
are used for the calculation of the structural capability. Furthermore, the 
increasing usage of computer aided engineering requests precise material 
parameters. Especially for sensors and actuators, an exact knowledge of 
mechanical as well as electrical quantities yields reliable simulations and ensures 
the functionality of a device. For the identification of the material parameters of 
piezoceramic transducers, we already introduced a so-called Inverse Method   
[1,  2]. Based on this method, the present contribution deals with a similar 
procedure to investigate the dynamic as well as thermal dependencies of 
mechanical material properties, namely elasticity modulus, Poisson’s ratio, and a 
damping factor.  
     In most cases, the mechanical properties for a material – e.g. provided by the 
manufacturer – are given as static values, typically arising from tensile or 
bending tests. Other possible methods are the indentation of defined tips and the 
acoustical logging of ultrasound pulses. It is well known that material properties 
more or less depend on temperature and frequency. Moreover, the so-called 
Williams-Landel-Ferry (WLF) shift constant gives a nonlinear relation between 
these two dependencies  [3]. Especially plastics show a significant sensitivity due 
to frequency and temperature. Consequently, many applications could benefit 
from a more precise knowledge of these relations. Some publications already 
dealt with this topic, mostly by exciting a specimen with a defined force and 
calculating material parameters with analytical descriptions (e.g.,  [4,  5]). 
Although these approaches exhibit very short computing times, they are 
exclusively applicable to specific sample geometries and demand for well 
defined experimental setups. Just as other research  [6,  7], we overcome this 
problem by means of using finite element simulations instead of analytical 
relations. In principle, these methods allow for arbitrary sample geometries und 
various measurements quantities at the cost of computational effort. In contrast 
to the existing publications on this topic, our novel method mainly benefits from 
utilizing both, a proven and tested optimization algorithm as well as an adapted 
finite element method. In addition, the experimental setup covers a wider 
frequency and temperature range compared to previous researches. Our first 
approach for determining frequency dependent material parameters was 
published in  [8,  9] applied to cylindrically shaped specimens made of silicone 
rubber. The present paper mainly deals with thin-walled components, namely 
polymer, ceramic, and aluminium plates. 
     The paper is organized as follows: In Sec.  2 the experimental setup to 
measured frequency resolved transfer function is explained. The utilized FE 
model and approach is briefly discussed in Sec.  3. After these fundamentals, the 
applied Inverse Method to determine frequency dependent material properties is 
described with different sub-steps (Sec.  4). Section  5 gives examples of possible 
investigations with the presented method and lists the results. Finally, the paper 
is summarized in Sec.  6, including a short outlook to our future research. 
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2 Experimental setup 

Figure 1 shows the experimental setup to measure a vibration transfer function 
between two points on a test sample. The clamped specimen is harmonically 
excited by an electromechanical shaker (TIRA® S 5200-120) under defined 
environmental condition (CTS® CV-70/200). Two laser Doppler vibrometers 
measure the out-plane velocities ݒଵ as well as ݒଶ and the frequency resolved 
transfer function ۶M is given by relating the amplitudes ݒොଵ and ݒොଶ: 
 

|۶Mሺ݂ሻ| ൌ
ොଶݒ

ොଵݒ
ฬ



 (1) 

 

 

Figure 1: Experimental setup. 

     Although the measurement points can be chosen arbitrarily, ݒଵ and ݒଶ are 
acquired near the clamping and the specimens’ free end in order to maximize the 
resonances magnification of  ۶Mሺ݂ሻ. The automation and signal processing is 
carried out with LabVIEW® and a NI PXIe-1071 data acquisition system 
(National Instruments Germany GmbH). 
     Since thin walled components play a decisive role for constructing devices as 
lightweight as possible, the method is concentrating on plate shaped specimens. 
In principle, the measurements can be performed on various sample geometries, 
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though it fits especially to rotationally symmetric specimens as the 
computational effort (Sec. 3) can be reduced in this case  [8,  9]. Figure 2 displays 
the three different possible excitations of a clamped beam in single direction: 
bending around x-axis (a), bending around z-axis (b), tension in y-direction (c). 
Cylindrically shaped samples are exclusively excited in z-direction (d). Note that 
the definition of the coordinate system is given in Fig. 3 and is always related to 
the specimen. One major problem, especially for the cases (b) and (c), is the 
occurrence of undesired vibrations in other directions than movement of the 
shakers base. The mass centre of clamping and sample do not exactly coincide 
with the shakers axis for various specimens. This results in an increasingly 
swaying movement of the shakers base and especially the free end of the sample 
for higher frequencies. In order to exclusively measure the vibration ݒଶ in the 
direction of the excitation ݒଵ, an in-plane laser Doppler vibrometer is utilized 
(Polytec® LSV-065-306F). Velocity ݒଵ is always detected by means of an out-of-
plane vibrometer (Polytec® OFV-303) that measures the surface normal velocity. 
The type of vibrometer is indicated with a double-pointed arrow in Fig. 2. 
 

 

Figure 2: Different cases of excitation for the two sample geometries: 
bending of a plate over short edge (a) and long edge (b), tension of 
a plate (c), tension of a cylinder (d); v1 and v2 represent the two 
measurands. 

     The measurement procedure is organized as follows: At first, the desired 
temperature is committed to the chamber control and the actual temperature is 
measured by means of a PT100 near to the free end of the sample. When this 
sensor detects the achievement of the target temperature, a holding time of 
30 minutes is applied to ensure a homogeneous temperature distribution within 
the specimen. Subsequent, the transfer function is acquired by measuring ݒଵ and 
 ଶ  for each entry in a given frequency vector. Note that these amplitudes areݒ
calculated by averaging over 100 single sinusoidal vibrations. The limitation of 
the frequency range depends on various quantities. First, the whole shaker setup 
exhibits resonance frequencies as well, depending on the masses of plunger, 
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clamping, and specimen (manufacturer data for unloaded base: >5 kHz). 
Consequently, the input power to the shaker has to be increased when the first 
anti-resonance occurs to provide a significant movement of the clamping. 
Second, the vibrometers introduce some limitations, namely a lower frequency 
limit and a specific sensitivity that determines the possible resolution of the 
measurements.  Typically the frequency range is limited to 10 Hz – 5 kHz, but 
especially for materials with a low damping factor, measurements could be 
carried out up to more than 10 kHz (see Sec.  5). 

3 Finite element models 

Additionally to the measurements, the presented Inverse Method is based on FE 
simulations. Therefore, a finite element model is needed that fulfils both, precise 
simulation results as well as minimum computing time. For the standard FE 
method (h–version) based on finite elements with second order shape functions 
the aspect ratio of an element is limited to avoid locking effects (see e.g.  [10]). 
Since mainly thin walled samples are investigated, this standard method would 
result in a high amount of elements and as a consequence in high computing 
times. On account of this fact, the presented method uses FE models with 
hierarchic shape functions (p–version) of higher order (p > 2). Additionally, the 
utilized non-commercial FE tool CFS++  [11] allows for the implementation of 
anisotropic shape functions – here, the order in x- and y-direction is chosen 
higher than along the thickness. For detailed information on this topic, we refer 
to  [12– 14]. The order p of the shape functions is chosen by means of increasing 
p until the simulated transfer function converges towards the solution with a very 
fine standard FE mesh. Note that for this parameter study, the transfer function 
contains five resonances. An example of a FE model optimized for the –version 
is given in Fig. 3 (left). In case of cylindrical specimens the standard h–version 
with second order shape functions is applied and the resulting model is 
exemplarily displayed in the right drawing of Fig. 3. 
 

 

Figure 3: Finite element models for a plate shaped specimen (left) and for a 
cylindrical sample (right). 

     The simulated frequency resolved transfer function ۶Sሺ݂ሻ is calculated 
equally to the measured one (Eq. (1)). For a plate, the nodes at the bottom and 
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the top side – with respect to z-direction – between the clamping are 
harmonically excited in one direction and fixed in the others. The excitation for 
cylindrical models is defined corresponding to the applied clamping as well 
(compare Figs. 2 and 3).  
     The material of the FE models is assumed to be globally homogeneous and 
isotropic. The variable material parameters are the real part of the elasticity 
modulus ܧ, the damping factor ߦ, and the Poisson’s ratio ߥ. Typically, the 
complex Young’s modulus is given by 

ܧ ൌ ᇱܧ  jܧᇱᇱ (2) 

and the damping factor or loss factor tanሺߜሻ is defined by the quotient between 
imaginary ܧᇱᇱ and real part ܧᇱ: 

ߦ2 ൌ tanሺߜሻ ൌ
ԢԢܧ
Ԣܧ

 (3) 

Note that due to readability, the real part of the elasticity modulus is denoted as 
ܧ ൌ  ܧ ,Ԣ. Considering the three different cases of excitation (Fig. 2)ܧ
corresponds to the bending/flexural modulus or a tensile modulus. Only in case 
of isotropic material samples, ܧ represents the Young’s modulus. 

4 Inverse Method 

The presented measurements und FE models are necessary input quantities for 
the so-called Inverse Method. This procedure is implemented in MATLAB® 
(The MathWorks, Inc.) and can be divided into the three sub-steps described in 
the following. Additionally, the result of each step is given in Fig. 4. Within 
every step, one or more material parameters are adapted in order fit simulation 
results towards the measurements.  

4.1 Eigenfrequency optimization 

At first, the elasticity modulus ܧ is adapted by means of two eigenfrequency 
simulations and the measured resonance frequencies that can be obtained from 
the measured transfer function. Based on the difference between two simulated 
eigenfrequencies S݂,୬ െ S݂,୬

כ  with respect to a given variation of the moduli 
୬ܧ െ ୬ܧ

 ୧୬୧୲,୬ for the n-th eigenfrequency M݂,୬ isܧ a proper initial guess ,כ
calculated by assuming proportionality. This first step provides the following 
optimization with a proper initial guess of ܧ for every resonance (see Fig. 4) that 
was found in the measured transfer function. The major benefit of this 
preliminary step is that the whole procedure can start with a completely 
unknown set of material parameters. 
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Figure 4: Different steps of the parameter identification procedure: results, 
types of analysis, and exemplarily calculation times. 

4.2 Optimization of the transfer function 

Within the second step, the transfer function around the resonances is considered 
for the optimization based on an iteratively regularized Gauss-Newton method 
(see e.g.,  [2, 9,  15]). This algorithm minimizes the difference between the 
measured and the simulated transfer function in the least square sense. For every 
iteration ሺ݅ሻ the correction vector ܛሺ୧ሻ has to be calculated that is given by  [16] as 

ሺܑሻܛ ൌ െൣ۴Ԣሺܘሺ୧ሻሻ୲۴Ԣሺܘሺ୧ሻሻ  αሺ୧ሻI൧
ିଵ

· ൣ۴Ԣሺܘሺ୧ሻሻ୲۴ሺܘሺ୧ሻሻ  αሺ୧ሻ൫ܘሺ୧ሻ െ  ሺሻ൯൧ (4)ܘ

The vector ܘሺ୧ሻ represents the parameters for the i-th iteration and ۷ stands for the 
identity matrix. αሺ୧ሻ is the so-called Lagrange parameter that tends towards zero 
for an increasing ሺ݅ሻ. The vector ۴ሺܘሺ୧ሻሻ denotes the difference between the 
simulated and the measured transfer function: 

۴ሺܘሺ୧ሻሻ ൌ ۶Sሺܘሺ୧ሻሻ െ ۶M. (5) 

۴Ԣሺܘሺ୧ሻሻ stands for the Jacoby-matrix with respect to the parameter vector ܘ and 
is given by: 

۴Ԣሺܘሺ୧ሻሻ ൌ
∂۴ሺܘሻ

ܘ∂
ቤ

ሺሻܘୀܘ
ൌ

∂۶Sሺܘሻ

ܘ∂
ቤ

ሺሻܘୀܘ
 (6) 

For step 2, the parameter vector ܘ contains only the elasticity modulus and the 
damping factor. At the end of this step, an optimum parameter pair of  ܧ୬ and ߦ୬ 
is given for every n-th resonance frequency M݂,୬. 
     Figure 5 gives an example of the resulting transfer function around one 
resonance. Two statements can be made by means of this graph: First, the 
eigenfrequency analysis in step one provides a good initial guess that is close to 
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the measured resonance. Second, the Inverse Method performs an exact curve 
fitting even in the case of noisy measurement data. Note that measured transfer 
functions are typically less noisy and this example represents the worst case. 
 

 

Figure 5: Result for a single resonance frequency after the second step 
including the initial guess obtained from step one. 

4.3 Determination of functional relations 

In order to use the determined material parameters for forward simulations, 
functional relations with respect to frequency are estimated in the least squares 
sense. Since plastics often show a logarithmic behaviour, we chose the following 
arbitrary functions: 

ሺ݂ሻܧ ൌ  ܽଵ  ܽଶ · ݂  ܽଷ · logሺ݂  10ሻ 

ሺ݂ሻߦ ൌ  ܾଵ  ܾଶ · ݂  ܾଷ · logሺ݂  10ሻ 

ߥ ്  ሺ݂ሻߥ

(7) 

(8) 

(9) 

Finally, these functions can again be optimized with the above mentioned Gauss-
Newton algorithm (see Sec.  4.2) considering the entire measured frequency 
range. Within this last step, the six coefficients ܽଵ,ଶ,ଷ and ܾଵ,ଶ,ଷ are the sought-
after and optimized material parameters ܘ. This last step is not essential as it 
gives just a refinement to the results of step 2. 
     Note that the coefficient ܽଵ represents the static behaviour and corresponds to 
the value obtained form a static tensile or bending test. Therefore, if ܽଵ is well 
known, it can be restricted to this measured quantity to reduce the amount of 
unknown parameters ܘ within the Inverse Method  [9]. 
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5 Results 

This section gives examples of measurements that can be carried out with the 
presented experimental setup and the Inverse Method. First, Fig. 6 shows the 
temperature dependent bending modules of a high-pressure die-casted 
aluminium plate identified with excitation case (a) (see Fig. 2). Here, the results 
are obtained only from the first step of the Inverse Method. Although, the 
accuracy of the determined elasticity modulus depends on the frequency 
resolution, a good indication of the temperature dependence is given. 
 

 

Figure 6: Temperature dependent bending modulus for the first four 
eigenfrequencies (Sample: high pressure die casted aluminium, 
150mm x 10mm x 6mm). 

     The second example is given in Fig. 7. The tensile modulus as well as the 
damping factor of a polyetherimide (PEI) rod is given over temperature. The 
modulus shows a nearly linear behaviour with a marginal hysteresis. The 
linearity matches to the fact that the glass transition temperature is much higher 
(manufacturer: ~215°C). The damping exhibits a minimum around zero degrees. 
 

 

Figure 7: Temperature dependent tensile modulus (excitation case d, first two 
resonances; Sample: PEI rod 300mm x Ø12mm). 
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     The last example is given in Fig. 8, investigating a glass fibre reinforced 
polypropylene (GFR-PP) plate. Here, the frequency dependent bending modulus 
is given for different temperatures. One can see that with increasing temperature, 
the modulus is decreasing much more with frequency. The glass transition 
temperature of PP is around 0°C, which can be observed in the wide distance to 
the -20°C and +20°C curves. 
 

Figure 8: Frequency dependent bending modulus (excitation case a) for 
different temperatures (Sample: glass fibre reinforced 
polypropylene, TEPEX® dynalite104 2mm). 

     Finally, the frequency dependence of the material properties is quantitatively 
expressed according to Section 4.3. The determined coefficients of functional 
relations for various investigated materials are summarized in Tab. 1. The value 

݂௫ indicates the upper frequency limit of the measurements and consequently 
gives the range in which the functions are valid. 

Table 1:  Coefficients of the functional relations (Eqs (4) and (5)) for various 
investigated specimens, representing the bending modulus (case a) 
at room temperature (20°C). 

 ܽଵ (Pa) ܽଶ (Pa·s) ܽଷ (Pa) ܾଵ ܾଶ (s) ܾଷ 
PEI 3.08·109 -4.85·104 1.21·108 7.11·10-2 1.31·10-5 -2.51·10-2 
GFR-PP 1.74·1010 1.44·104 4.09·108 3.20·10-2 -2.37·10-6 -6.20·10-3 
Aluminium 6.83·1010 6.08·105 2.05·108 2.90·10-3 6.90·10-8 -7.21·10-4 
 ~ ݂௫ length  width thickness 
PEI 2.5 kHz 280 mm 40 mm 5 mm 
GFR-PP 3.0 kHz 200 mm 40 mm 2 mm 
Aluminium 10.0 kHz 150 mm 10 mm 6 mm 
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6 Conclusion and outlook 

We presented a novel method to determine the frequency as well as temperature 
dependence of the elasticity modulus and a damping factor. The experimental 
setup allows for dynamic bending and tensile loading of plate shaped specimens. 
In addition, the necessary finite element model is capable of producing reliable 
simulation results for thin-walled samples by applying the –version of the FE 
method. Both simulations and measurements are the input quantities for the 
utilized Inverse Method, wherein simulation results are adapted appropriately to 
match the experimental data. 
     The determined material properties are quantified as functional relations 
versus frequency at room temperature for different specimens. The thermal 
dependencies of the elasticity modulus and the damping factor are graphically 
presented in different ways considering a single frequency or the whole 
frequency range. The investigated materials exhibit a more or less distinct 
frequency and temperature dependence. Especially for polymers – as one could 
expect – the dynamic and thermal properties have to be considered with a view 
to an accurate design of devices incorporating these materials. However, also 
aluminium shows a significant frequency and particularly temperature 
dependence. Well knowledge of both relations yields reliable simulation results 
and can help to reduce the weight of a device in a very early stage of 
development.    
     The focus of our future work lies on including Poisson’s ratio in the Inverse 
Method and, furthermore, concentrating on transversally isotropic materials. 
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