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1Institute of Thermomechanics ASCR, Czech Republic
2Czech Technical University in Prague, Czech Republic

Abstract

In this paper, we analyze the possibility of determination of all in–plane indepen-
dent elastic coefficients of an anisotropic surface coating on a known substrate
by means of resonant ultrasound spectroscopy (RUS). A novel approach based on
perturbation theory is presented, which enables direct determination of the elastic
coefficients of the coating from the shift of resonant frequencies induced by the
deposition of the layer. The reliability of the proposed concept is investigated by
numerical simulations as well as verified by experiments.
Keywords: ultrasound spectroscopy, thin coatings, perturbation theory, non-destruc-
tive evaluation, in-plane anisotropy.

1 Introduction

Reliable determination of elastic coefficients of thin surface layers and coatings
is one of the most challenging topics of today’s experimental mechanics. Con-
ventional micro/nanoindentation techniques are usually neither able to distinguish
clearly which part of the elastic response is inherent to the coating and which to
the underlying substrate, nor suitable for determination of all independent elastic
coefficients of anisotropic coatings. A promising alternative to these highly local
techniques are the ultrasonic methods, which may be either the methods based
on surface elastic waves (SAW), or the resonant ultrasound spectroscopy (RUS)
where the sought elastic coefficients are determined from measurements of reso-
nant spectra of free elastic vibrations of a specimen of the examined material. The
latter will be discussed in this paper.

Nowadays, the RUS is one of the most widely used methods for determina-
tion of elastic coefficients of bulk anisotropic materials. This method has found
its very first applications in geophysics as early as in late 1960s, where the elas-
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tic coefficients of rocks and minerals were determined from resonant spectra of
spherical samples (so-called resonant sphere technique, RST [1]) or small cubes
[2] of the examined material. Later on, the method was significantly improved by
Ohno and his coworkers, enabling determination of anisotropic elastic coefficients
up to orthorhombic [3] and trigonal [4] symmetry class from measurements on a
rectangular parallelepiped (so-called rectangular parallelepiped resonance, RPR).
In early 1990s, Migliori et al. [5] introduced this method to solid state physics com-
munity, and applied it immediately to in-situ monitoring of elasticity changes of
high temperature superconductors when undergoing transitions to the supercon-
ducting state [6]. In these pioneering works, also the more general abbreviation
RUS started to be used. The measurements were further improved by scanning the
surface of the resonating specimen by a laser vibrometer, thus not only the reso-
nant frequencies but also the shapes of vibration modes became available. In 2002,
Ogi et al. [7] used this improvement for reliable identification of individual modes
in the obtained spectrum, which was the approach further developed by the authors
in the past few years [8–12].

As far as the investigation of thin surface layers and coatings is concerned,
the first attempt to modify the RUS technique for such problems can be found
in Visscher’s paper [13], where, among many other general shapes of the speci-
men, also a ’sandwich’ (a specimen consisting of two parallel layers) is discussed.
By decreasing the thickness of one of the layers, such ’sandwich’ obviously limits
to a substrate–coating system; this idea was utilized by So et al. [14], who used
the concept outlined in [13] for modeling of free vibrations of a SrTiO3 substrate
coated by a thin magnetoresistant film.

Extensive experimental literature on RUS investigation of thin surface layers
was published by Ogi and his coworkers. It covers a huge variety of substrate–
coating systems ranging from superlattice thin films (Co/Pt multilayer in [15]) to
diamond coatings deposited by CVD [16, 17]. The main improvement brought by
the Ogi’s group to the experimental embodiment of RUS lies in a novel experi-
mental scheme, so-called tripod scheme (e.g. [7]). In this scheme, the investigated
specimen is freely laid in a tripod of thin, rod-like piezoelectric transducers (one of
them is used for generation of vibrations, the others for detection of the specimen’s
response). Compared to the classical scheme used in earlier works (e.g. [5]), where
the specimen is clamped between two transducers, the tripod scheme ensures that
the vibrations of the specimen are very close to free vibrations (the clamping force
is eliminated, which is crucial particularly for thin plates or shells). For mathemati-
cal description of the vibrating substrate–coating systems, the Ogi’s group uses full
3D–3D ‘sandwich’ models based on the concept of Visscher [13], often utilizing
an interpolation method developed by Heyliger [18].

In this paper, novel theoretical and the experimental approaches will be dis-
cussed. Unlike to the ’sandwich’ concept from [13], our approach reflects the mul-
tiscale character of the problem, treating the surface layer as a 2D object deposed
on a 3D substrate. In the experimental part, a fully non-contact setup [11] is pre-
sented, where the vibrations of the specimen are both generated and detected by
lasers. As it will be shown, these novel approaches lead to reliable, reproducible
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and straightforward determination of elastic coefficients of the examined surface
layer.

2 Theory and preliminary numerical tests

The main idea of RUS measurements is following: First, the resonant spectrum of
vibrations of the examined specimen is measured and individual resonant frequen-
cies are localized. Then, the elastic coefficients are determined inversely, which
means that they are tuned such that the resonant frequencies computed for them
fit the experimentally obtained spectrum in some optimal way. For such procedure,
one must be able to solve the so-called direct problem, i.e. to evaluate the resonant
frequencies of the specimen for known elastic coefficients. For homogeneous, bulk
specimens of simple geometry, this can be easily achieved by finding stationary
points of the Lagrangian energy of the vibrating specimen (a simple variational
problem, which can be easily solved by Ritz method, see e.g. [5, 7, 10, 12]). In the
following section, the direct problem will be posted and solved for a substrate–
coating system.

2.1 Perturbation model of a vibrating substrate–coating system

Consider now a vibrating substrate (a rectangular parallelepiped with edges aligned
to cartesian coordinates x1, x2 and x3) on which a thin coating is deposited (on a
face normal to the x3 axis). The kinetic and potential energy of the substrate are

Ek =
1
2

∫

Vs

ρsu̇iu̇idVs and Ep =
1
2

∫

Vs

C
(s)
ijkl

∂ui

∂xj

∂uk

∂xl
dVs, (1)

where, u is the displacement field, ρs is the density, C(s)
ijkl are the elastic coeffi-

cients and Vs = 〈−d1/2; d1/2〉 × 〈−d2/2; d2/2〉 × 〈−d3/2; d3/2〉 is the volume
of the substrate. By taking polynomial approximation of the displacement field

ui =
N∑

k=1

α
(i)
k ψk(x1, x2, x3) cos (ωt) (2)

(where ω is the angular frequency of harmonic vibrations and the basis ψk can
be advantageously chosen as orthonormal Legendre polynomials), it can be easily
shown (e.g. [5]) that the problem of finding stationary points of the Lagrangian of
the substrate L = Ek − Ep can be rewritten as a generalized eigenvalue problem
of the following form:

K�α− ω2M�α = �0, (3)

where �α is a vector of coefficients from approximation (2) and the matrices K

and M are given by the geometry, density and elastic coefficients of the substrate
[5, 7, 10, 12].
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Let us now incorporate the presence of the coating in this model. The kinetic and
potential energy of the coating (understood here as small perturbations δEk and
δEp) are considered now as fully given by the displacement field u at the surface
of the substrate where the coating is deposited. For h standing for the thickness
of the coating, a possible assumption is to take this displacement field (denoted
here as v(x1, x2, t)) as an extrapolation of displacement field u in the midplane
of the coating (e.g. in distance h/2 above the surface of the substrate) (in this
simplification, we neglect the fact that the derivatives of u can be discontinuous
over the substrate–coating interface) which reads

vi(x1, x2, t) = ui(x1, x2, x3 = d3/2, t) +
h

2
∂ui

∂x3
(x1, x2, x3 = d3/2, t) (4)

for i = 1, 2, 3. This leads to the following simplified expressions

δEk =
h

2
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ijkl
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∂vk
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for the kinetic and elastic energy of the coating respectively, where the subscripts c
and superscripts (c) denote the quantities related to the coating. Using the approx-
imation (2) again, a perturbed eigenvalue problem can be arrived, relating the per-
turbation of matrices K and M to the small changes in the angular frequencies δω2

as
(K + δK)(�α+ δ�α) − (ω2 + δω2)(M + δM)(�α + δ�α) = �0. (6)

In this first, linear approximation, is �α ⊥ Mδ�α and thus, after some additional
algebra, the perturbation of the resonant frequency of the i−th mode (δω2

i ) can be
expressed as

δω2
i =

�αi
T(δK − ω2

i δM) �αi

�αi
T

M �αi

. (7)

This formula directly relates the shifts of the resonant frequencies to the elastic
coefficients, the density and the thickness of the coating (embodied here by the per-
turbations δK and δM.) In other words, it enables C(c)

ijkl to be determined directly
from the shifts δω2

i , without solving the full eigenvalue problem (6) within every
step of the inverse procedure. This makes the use of the perturbation model not
only enormously less computation-time-consuming than the classical approaches,
but more lucid for further theoretical analysis (e.g. estimation of the experimental
errors).

It is more than obvious that the shifts δω2
i cannot contain sufficient information

on all the elastic coefficients C(c)
ijkl . In the potential energy δEp, all the products

C
(c)
ijklεijεkl = σ

(c)
kl εkl give zero whenever k or l equals to 3 (plane stress con-

ditions in the coating), which decreases the number of the involved elastic coeffi-
cients from 21 down to 6. These coefficients can be arranged into a symmetric 3×3
matrix Q, which represents a linear relation between the non-zero components of
the stress tensor (σ11, σ22 and σ12 only) to the in-plane components of the strain
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tensor (ε11, ε22 and ε12), i.e. [σ11, σ22, σ12]T = Q[ε11, ε22, 2ε12]T. It can be easily
shown that

Q =




(C−1)(c)1111 (C−1)(c)1122 (C−1)(c)1112

(C−1)(c)2222 (C−1)(c)2212

symm. (C−1)(c)1212




−1

, (8)

where (C−1)(c)ijkl is a compliance tensor. Further in this text, we will use this matrix
Q for characterization of in–plane elastic coefficients of the coatings, i.e. of those
elastic coefficients of the coatings theoretically obtainable from RUS measure-
ments on the substrate–coating system.

2.2 Numerical comparison to a full 3D–3D model

The above proposed perturbation model can be expected to work properly for h�
d3. Indeed, both the perturbations of the energetic quantities, δEk and δEp, are
linearly proportional to the thickness of the coating, so limiting h → 0 increases
the validity of our assumptions. A natural question arises, how thin the coating
must be to justify the use of the perturbation model, i.e. to ensure that this model
provides the frequency shifts with some satisfying accuracy. To investigate this,
and in order to verify the correctness of our model, we made the following prelim-
inary numerical tests prior to applying the perturbation model to real experimental
data:

1. We considered a homogeneous specimen (a 4mm×5mm×1mm single crys-
tal of silicon cut along the principal directions) with the smallest dimension
slightly increasing, and analyzed whether the changes of the resonant fre-
quencies due to the thickening (evaluated by solving the eigenvalue prob-
lem (3) for different d3) can be captured by the perturbation model. In
other words, we analyzed a substrate–coating system, where the coating had
exactly the same elastic properties as the substrate.

2. We assumed a full 3D–3D ’sandwich’ model (similar to [13] but using an
orthogonal basis) as a reference and compared the frequency shifts predicted
by this model to those evaluated by relation (7). The analyzed system in this
case was a CVD deposited diamond coating on the same substrate as in the
first example.

For both these systems, shifts of the first thirty resonant frequencies of the sub-
strate were evaluated. The results are shown in Fig. 1. In the upper row, the fre-
quency shifts are shown for two chosen modes (the 1st and the 12th mode in the
spectrum; circles denote the full 3D–3D models, solid lines are the shifts deter-
mined by relation (7)), in the lower row, the difference between the shifts predicted
by the both models for all analyzed thirty modes is plotted versus the thickness and
the mode number. The results are shown for the thickness of the coating ranging
from 10nm to 100 µm.

Obviously, there is a significant difference between the two analyzed systems.
Except of three or four modes, the perturbation model sufficiently approximates
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Figure 1: Comparison of the perturbation method to a full 3D–3D model. Upper
row: Frequency shifts for the 1st and the 12th mode depending on the
thickness of the coating h. (Circles denote the full 3D–3D models, solid
lines the perturbation method). Lower row: Differences between the two
discussed models for the first 30 modes.

the frequency shifts for the silicon substrate with changing thickness up to h =
100 µm, whereas the silicon–diamond system is reasonably described by the per-
turbation model for h ≤ 10 µm only. The reason may be found in the disproportion
between the elastic properties of silicon and of the deposited diamond. The cubic
single crystal of silicon has c11 = 166 GPa, c12 = 64 GPa and c44 = 80 GPa;
for the isotropic diamond coating (polycrystal aggregate), the bulk coefficients
c11 = 1143 GPa and c44 = 530 GPa were taken from [7]. Thus the diamond is
nearly seven times ’tougher’ in tension than the silicon substrate itself. That is the
reason why the potential energy of a 100 µm thick diamond coating cannot be
ever taken as a small perturbation of the potential energy of the 1mm thick silicon
substrate, and the perturbation approach fails. We can conclude that any estima-
tion of limiting thickness h for which the perturbation approach reliably works is
impossible without taking the ratio between elastic moduli of the substrate and the
coating into account.
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Figure 2: Outline of the non-contact experimental scheme of RUS.

3 Experiment

In this final section, the above outlined approach will be verified experimentally.
The experiment (the setup and instrumentation) will be briefly described, and the
results for two testing materials will be presented and discussed.

3.1 Experimental setup

For the RUS measurements described in this paper, a fully non-contact scheme [11]
was used. In this scheme, the specimen is excited by an impact of a focused laser
pulse (so-called thermoacoustic source) and the vibrations are detected by laser–
Doppler interferometer scanning the surface of the excited specimen. The speci-
men itself is laid of an underlay which must be extremely acoustically soft (i.e. its
acoustic impedance must be incomparably smaller than the impedance of the spec-
imen) to ensure a good approximation of the free-surface boundary conditions. To
minimize the damping of the specimen, the whole measurement is performed in
an evacuated chamber with two silica-glass windows, one for each of the used
laser beams (see Fig. 2 for an outline). The used instrumentation was following:
The elastic vibrations in the specimen were excited by sequences of pulses of a
focused infrared laser beam (pulse duration 8 ns, energy 25 mJ, Quantel ULTRA
Nd:YAG Laser system, equipped by fiber optic – FOLA options). The displace-
ment response was detected in a mesh of points on the sample surface by Polytec
Micro System Analyzer MSA-500 (using the OFV-5000 controller and the sensor
head OFV-551).

This scheme was inspired by measurements by Zadler [19], who used lasers to
excite specimens hanging on thin silica wires. However, the use of the acoustically
soft underlay proposed by the authors seems to provide adequately good approx-
imation of the free-surface conditions, but with much easier specimen mounting
and replacement. This experimental concept was already successfully applied to
determine elastic coefficients of various bulk materials [11, 12], and was shown to
be especially suitable for quantitative measurements of ultrasound attenuation [20].
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3.2 Experimental verification of the perturbation model

The non–contact experimental scheme of RUS was used to verify the perturbation
model. To know the sought elastic coefficients of the examined layers with the
highest possible accuracy, and thus, to be able to analyze how reliably these coef-
ficients can be determined by relation (7), we decided to use the same approach as
in the first of the preliminary numerical tests, i.e. to perform the measurements on
homogeneous specimens where the presence (or absence) of the surface coating is
represented by a change in thickness.

Two different materials were used for such experiments. The first was a single
crystal of silicon (a 2.1 mm × 3.6 mm × 3.1 mm rectangular parallelepiped cut
along the principal crystallographic axes) and the second a reaction-bonded sil-
icon carbide Si–SiC (1.8 mm × 2.5 mm × 2.8 mm rectangular parallelepiped).
These specimens were taken as substrates with surface layers; the resonant spectra
of these specimens were measured (covering always about the first thirty modes)
and individual modes of vibration within the spectra were identified. After that,
the considered surface layers were removed by polishing: 32 µm thick layer was
polished out from the single crystal of silicon, 8 µm thick layer from the speci-
men of the reaction-bonded silicon carbide. This approach simulated the issue of
determination of elastic properties of a 32 µm thick cubic surface coating and a
8 µm thick isotropic surface coating. The resonant spectra of the specimens with-
out the ‘coatings’ were measured and the frequency shifts δω2 for particular modes
were identified (in this point, the identification of the modes from scanning laser–
Doppler interferometry is obviously crucial, as the original order of the resonances
can be shuffled when the layer is deposited/removed).

To verify the reproducibility of the measurements, the spectra of the specimens
before the layers were polished out were measured repeatedly under slightly differ-
ent conditions (the impacting laser was was focused on different places of the spec-
imen, the specimen was removed from the chamber and put back again etc.). In
Fig. 3, the spectra obtained by two different measurements of the specimen before
polishing (solid lines) are compared to the spectrum of the specimen without the
examined layer. Obviously, the reproducibility of the measurements is extremely
good and all the shifts of individual peaks in the spectrum can be reliably ascribed
to the presence/absence of the surface layer.

Our aim was to determine the elastic coefficients of the removed layers Qij by
inverting the perturbation formula (7). This was done in two different ways:

1. The symmetry class of the examined material was considered as known, i.e.
only three independent coefficients for cubic silicon were sought (Q11, Q12

and Q33) and two (Q11 and Q33) for the isotropic silicon carbide.
2. Full elastic anisotropy of the layer was considered, which means six inde-

pendent elastic coefficients Qij . However, as all the modes of vibration of
the examined layer were forced by free vibrations of the specimen, the layers
were loaded only in modes having the same symmetry as the substrates (i.e.
in modes symmetric or antisymmetric with respect to symmetry planes of
the substrates). This obviously precludes reliable determination of the coef-
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Figure 3: A selected part of the obtained spectrum (Si-SiC specimen) illustrating
the reproducibility of the non–contact RUS measurements and the shifts
induced by the absence of the surface layer. Solid lines (black and gray)
correspond to two independent measurements of the original specimen,
the dashed line shows how the resonant frequencies change after a 8µm
thick surface layer was removed.

ficients Q13 and Q23, so only Q11, Q22, Q12 and Q33 were sought. (The
coefficients Q13 and Q23 could be, however, determined by measurements
on less symmetric substrates.)

In both cases, the sought coefficients Qij were calculated by numerical inversion
of relation (7), whereto the measured shifts of resonant frequencies were fitted in
the least–square sense. In Tab. 1, the results are listed and compared to coefficients
Q

(s)
ij determined from the elastic coefficients of the substrate C(s)

ijkl by formula (8).
The experimental errors displayed in Tab. 1 result from the accuracy of measure-
ments of the removed layer, which was estimated to be about 1 µm.

In the case of the single crystal of silicon, this table shows how powerful tool the
perturbation model can be. Not only that all the elastic coefficient for the known
class of symmetry were determined with satisfying accuracy (especially when the
uncertainty given by the thickness of the layer is taken into account), but also the
cubic symmetry can be reliably identified: For cubic silicon, the constants Q11

and Q22 differ by less than 2%. For silicon carbide, the results are less satisfying.
Although for the given symmetry class, the results are quite good, the isotropy
requires Q11 = Q22 = Q12 + 2Q33, which is here not fulfilled (difference larger
than 10%). This may be ascribed to heterogeneity or porosity of the material or to
the fact that for h = 8 µm, the uncertainty in the thickness (and plan–parallelism)
of the removed layer is more significant.
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Bulk material Layer (perturbation model)

Examined h Q
(s)
11 Q

(s)
12 Q

(s)
33 Q11 Q12 Q33

material [µm] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

Silicon 32 141.5 39.5 79.7 142.0 37.4 82.8± 1 ± 4.3 ± 1.2 ± 2.6

Si–SiC 8 412.2 - - - 168.6 436.2 - - - 192.7± 1 ± 54.5 ± 24.1

Layer (perturbation model, full anisotropy)

Examined h Q11 Q12 Q13 Q22 Q23 Q33

material [µm] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

Silicon 32 140.9 36.4 N/A 143.1 N/A 82.8±1 ± 4.4 ± 1.1 ±4.5 ±2.2

Si–SiC 8 422.4 32.6 N/A 454.4 N/A 179.0±1 ± 52.8 ± 4.1 ± 56.8 ±22.4

Table 1: Comparison of in–plane elastic coefficients Qij determined by RUS on
bulk specimens and by the perturbation model.

4 Conclusion

By introducing the perturbation theory into the RUS of thin surface coatings, the
in–plane elastic coefficients of isotropic and cubic coatings can be easily and reli-
ably determined. In future, the authors would like to focus on the effect of the
disproportion between the elastic properties of the substrate and the coating (see
paragraph 2.2) and the the analysis of the experimental errors of the obtained coef-
ficients in dependence on various factors, such as symmetry of the substrate, etc.
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