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Abstract 

Neural networks are useful tools for optimizing material properties, considering 
the material’s microstructure and therefore the thermal treatments it has 
undergone. In this research an artificial neural network (ANN) with a Bayesian 
framework able to predict the bake hardening and the mechanical properties of 
the Transformation-Induced-Plasticity (TRIP) steels was designed. The forecast 
ability of the ANN model is achieved taking into account the operating 
parameters involved in the Intercritical Annealing (IA), in the Isothermal Bainite 
Treatment (IBT) and also considering the different prestrain values and the 
volume fraction of the retained austenite before the Bake Hardening (BH) 
treatment. This approach allowed one to overcome the need to know the 
metallurgical rules that describe all the active phenomena in multiphase steels. 
The neural network approach allowed one to overcome the lack of prediction 
capability in the existing numerical models. 
Keywords: bake hardening, Transformation-Induced Plasticity, neural network, 
Bayesian framework. 

1 Introduction 

The increasing demand for the reduction of automobile CO2 emissions for 
environmental preservation has lead the automotive industries towards the 
weight reduction of mechanical components. The main focuses of the automotive 
market are, indeed, to guarantee safety and comfort while maintaining the light 
weight of the cars. The Transformation-Induced Plasticity (TRIP) steels allowed 
one to achieve these goals.  
     TRIP steels have a multiphase microstructure composed of a ductile ferrite 
matrix, hard bainite, hard martensite, and retained austenite in metastable 
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conditions. The volume fraction of the retained austenite is the origin of the so 
called TRIP effect that consists of the increasing elongation and strength 
capability of material produced from the transformation of the retained austenite 
to martensite under mechanical loading conditions. In order to obtain a large 
amount of retained austenite, the material is subjected to two thermal treatments, 
called respectively Intercritical Annealing (IA) and Isothermal Bainite Treatment 
(IBT). 
     Another important objective in the development of automotive steel is to 
reach a good combination of strength and formability. Formability is required 
when the sheet is shaped into an automobile body panel, whereas high strength is 
required after assembly. Bake-hardenable steel sheet was developed by 
exploiting the occurrence that these two properties are not simultaneously 
needed. After the manufacturing and assembly processes of a car body 
component, painting and baking are carried out. These processes involve heating 
the steel body panels to about 443°K and maintaining it at this temperature for 
30 minutes. At this temperature, the carbon atoms dissolved in the steel diffuse, 
segregating in the regions around dislocations where the stresses are 
compressive. This results in a locking of the dislocations, which is called strain 
aging. This mechanism makes the steel panels harder after baking than after 
press forming. The utilization of this bake hardening phenomenon has made it 
possible to use steel sheet that has good formability during press forming and 
that can withstand severe working, whereas it is hard and less prone to denting 
when assembled in the car body.  
     The experimental characterization of the material response, at different values 
of the main variables that influence the Bake Hardening (BH) and the 
mechanical properties of TRIP steels, may be both expensive and time 
consuming, but the evaluation of these factors is necessary to produce 
components with the desired properties. 
     Many constitutive numerical models have been developed to evaluate the 
mechanical properties or the BH properties of TRIP steels. As described in the 
following section, for each proposed constitutive model, it is possible to identify 
a range of thermo-mechanical parameters in which a lack of fit between the 
experimental and modelled data appears. Furthermore, the metallurgical 
complexity of these steel requires one to consider the behaviours of each existing 
phase and also to translate into mathematical expression the phase interactions 
developed under thermomechanical cycles.  
     The artificial neural network (ANN) tool offers a forecasting method that may 
overcome the lack of fit to numerical models and moreover, is able to model the 
phase transformations phenomena influenced by strong non linear factors. This 
approach in addition offers the forecasting capability of a model for two aspects, as 
the ultimate tensile strength (UTS) and the BH, which are produced from different 
and complex metallurgical modifications. The literature researches offer some 
neural models able to predict the BH of TRIP steels that start from the chemical 
composition of material. In this research the capability to take in to account the 
material variability at the volume fraction retained austenite parameter is assigned 
(Barcellona et al. [1], Wasilkowska et al. [2], Girault et al. [3].) 
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     The aim of the conducted study is to develop a model that is able to predict 
the mechanical strength and the BH effect of TRIP steels as a function of the 
main parameters that are influent in the three treatments, IA, IBT and BH, by 
means of a neural network approach with a Bayesian framework. Several 
published data on the microstructural composition, BH and mechanical 
properties of TRIP steels related to the times and temperatures for performing 
the above mentioned thermal treatments, have been joined with the authors’ 
experimental data in order to define a significant training and validation data set. 

2 TRIP and BH effects 

The designing activity for a forecast tool for the mechanical and functional 
properties of multiphase materials, such as TRIP steel, needs to start from a deep 
knowledge of the main metallurgical aspects that affect the BH and the 
mechanical properties of TRIP steels both in the case in which the 
phenomenological approach is considered and in the case of a neural model. The 
following summarizes the main metallurgical aspects characterizing the TRIP 
and BH effects. 

2.1 TRIP effect 

TRIP steels are characterized by a very low content of alloying elements, such as 
in the tested material the total content of alloying elements is about 3.3 wt. pct; 
in particular C, Mn, Si, Al are present and other residual elements (0.8 wt. pct).  
     For a given chemical composition, the presence of the trip effect is produced 
from the two-stage heat treatment after cold rolling: the IA and IBT treatments. 
Considering that carbon is one of the stronger austenite stabilizer elements, the 
amount of the austenite phase at room temperature in a metastable condition is 
connected to the austenitic carbon content reached during the Isothermal Bainite 
Treatment (IBT). In fact, the IBT is the most critical stage of the production 
process for any TRIP steel. During the IBT, the carbon, which cannot produce 
the carbides typical of the bainite phase because of the silicon presence, diffuses 
into the austenitic regions and leads to the stability of the retained austenite at 
room temperature. The final amount of retained austenite depends therefore on 
the holding time during the IBT step without the carbide precipitation 
phenomena and also on the Si content. The silicon alloying also determines the 
ferrite matrix strengthening by means of solid solution. 
     During the martensitic transformation of the retained austenite upon 
mechanical loading, the regions surrounding the transformed phase, in order to 
accommodate the deformation produced by the phase transformation, undergo a 
plastic deformation that is added to the deformation produced from the 
mechanical load. The understanding of relationships between microstructure and 
mechanical properties requires the analysis of different phase roles.  
     The TRIP effect arises from the strain-induced transformation of retained 
austenite to martensite; this transformation result is accompanied by a volume 
expansion that generates plastic deformation and work hardening of the 
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surrounding ferrite phases. In fact, during the first phase of the deformation 
process, the hard phases dispersed in soft ferrite, i.e. bainite and thermal 
activated martensite, produce an increasing of the density of dislocations and 
therefore a high initial value of the work hardening rate. This phenomenon 
determines a high initial slope in the flow stress curve of the material. 
Furthermore, in TRIP steels, during the whole deformation process, at increasing 
of the strain level, the retained austenite progressively transforms itself to the 
martensite. This phenomenon determines a high work hardening rate and 
therefore flow stress curve slope; this is also the case for higher strain values. 
The persistence of the high work hardening rate may be attributed to the 
formation of stress induced martensite and the accumulation of dislocations in 
the soft ferrite matrix. Therefore, this strain-induced transformation determines 
high uniform elongation and also high strength of the material; furthermore it 
delays the onset of necking and increases the crash energy absorption capability 
of the material. Finally, the martensitic transformation generates inside the 
material a compression stress that confers high fatigue resistance (Kumar 
Srivastava et al. [4], Wang et al. [5]). 

2.2 BH effect 

The BH phenomenon consists of the increasing of yield properties of material 
after the paint baking treatment. The deforming process of working parts is 
always experimentally simulated by prestrain. The BH properties are therefore 
evaluated considering the difference between the yield stress after baking and the 
flow stress corresponding to a selected percentage of prestrain before the BH 
treatment. This treatment consists of the aging of the material at 443°K for 30 
minutes. Many factors, such as the bainite phase-transformation, increasing of 
the carbon content in the retained austenite, decreasing of the retained austenite 
content and increasing of the dislocation density in ferrite matrix, influence the 
yielding phenomenon of tensile prestrained and baked trip steel sheets.  
     It is possible to distinguish different contributions inside the yield variation 
connected to the paint baking treatment. Initially there is an increment of yield 
stress produced into the ferrite matrix due to an activate diffusion of the solid 
solute, which determines a hindrance of dislocation movement. Upon longer 
aging times, carbides precipitate out the C atmospheres around the dislocations, 
resulting in an increase in both yield stress and ultimate tensile strength. Another 
contribution of yield increment is produced from increasing of the carbon 
content in the retained austenite during baking and the produced solid solute 
strengthening effect determines the strength of the retained austenite. It also 
needs to be remarked that during the baking treatment, a decrease in the amount 
of the retained austenite due to the austenite transformation to bainite, which is 
more stable at the given temperature, appears. Each contribution on the yield 
properties of material is connected on the amount of each phase. During the BH 
treatment the amount and therefore the yield contribution of the martensitic 
phase does not change.  
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3 The existing numerical models 

The existing numerical models consider these particular multiphase steels as a 
composite material, and therefore start from the phenomenological laws that 
describe the mechanical behaviour of each existing phase. The interaction 
between the martensite and austenite phases is examined using the Gladman-type 
mixing law and foresees the assumption of the partition stress and strain 
mechanism between the two phases. The kinetics of the strain induced 
transformations are modelled using the Olson-Cohen equations. This approach 
allows one to simulate the mechanical behaviours of TRIP steels, but does not 
consider the main aspect connected to the BH effect, and therefore the results are 
unable to predict this important aspect of TRIP steels. The other most used 
numerical models to simulate the mechanical behaviours of TRIP steels are the 
Johnson-Cook, the Ludwig and the Zhao models or variants of these. Each 
numerical model has a specific applicability range that is coupled with the 
determination of strain ranges in which the fitting capability of the model 
decreases. These models also do not consider the physical aspect connected to 
the BH effect (Shan et al. [6], Liu et al. [7], Li et al. [8], Bouquerel et al. [9]). 

4 The ANN technique 

The ANN approach constitutes a regression analysis method in which a flexible 
non linear function is fitted to the experimental data. This tool is able to capture 
complex relationships characterizing phase transformations, without requiring 
mathematical descriptions of phenomena.  
     The Bayesian framework applied to the neural model is able to take into 
account the fitting uncertainty. This method calculates a probability distribution 
of the set of neural network weights and provides the outputs error bars, defining 
the applicability range of the neural model. Furthermore, the significance of the 
input variable is automatically quantified.  
     Considering the Kolmogorov theorem, the complexity of each system can be 
captured with a neural network model containing a single hidden layer; the 
flexibility of the model is attained operating on the number of the hidden units. 
The general model formulation considering a feed-forward architecture with one 
hidden layer and i hidden units is:  
 

ݕ ൌ ∑ ݓ
ሺଶሻ

 ݄  ߠ
ሺଶሻ,                                        (1) 

 
where                                      ݄ ൌ ∑൫݄݊ܽݐ ݓ

ሺଵሻ
 ݔ  ߠ

ሺଵሻ൯,                            (2) 
 

 are the bias corresponding to each neural ߠ , are the outputsݕ , are the inputsݔ
node, w are the neural weights and the superscript (1) refers to the hidden layer, 
whereas the superscript (2) refers to the output layer. Eqn (1) expresses the 
output of the neural model, whereas eqn (2) expresses the transfer function. The 
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combination of several hyperbolic tangents confers to the model the ability to 
capture the non linear relationship between inputs and outputs.  
     The number of input, output and hidden nodes and their connections defines 
the architecture of the neural model. The Bayesian framework foresees that the 
weights and biases of the network are assumed to be random variables with 
specified distributions and provides a method to improve the generalization 
capability of the neural network, usually called regularization.  
     The backpropagation algorithm is able to train multilayer feed-forward 
networks with differentiable transfer functions to perform function 
approximation, pattern association, and pattern classification. There are several 
backpropagation training algorithms; among them, the Bayesian regularization 
algorithm consists of a modification of the Levenberg-Marquardt training 
algorithm to produce networks that generalize well, reducing the difficulty of 
determining the optimum network architecture.  
     The Bayesian regularization involves modifying the performance function, 
which normally is the sum of the squares of the network errors on the training 
set. The formulation of the Bayesian performance function is depicted in eqn (3): 
 

ܧܵܯ ൌ ܧܵܯ ߛ   ሺ1 െ  (3)                            ,ܹܵܯ ሻߛ
 
in which ܧܵܯ is the modified performance function,  ߛ is the performance 
ratio, ܧܵܯ is the typical performance function mean squared error given by: 
 

 ܧܵܯ ൌ  
ଵ

ே
 ∑ ሺ݁ሻଶ

ே
ୀଵ  ൌ

ଵ

ே
 ∑ ሺݐ െ ሻଶݕ

ே
ୀଵ ,                       (4) 

 
in which ݐ െ   represents the difference between the target value and the outputݕ
value and ܹܵܯ is the mean of the sum of the squares of the network weights: 
 

 ܹܵܯ ൌ  
ଵ


 ∑ ൫ݓ൯

ଶ
ୀଵ .                                         (5) 

 
The determination of the optimum value for the performance ratio parameter ( ߛሻ 
allows one to generate a network that best fits the training data. In effect, if this 
parameter is too large, it may get overfitting and if the ratio is too small, the 
network will not adequately fit the training data.  
     The described network architecture has been implemented using the 
MATLAB neural network toolbox that provides some routines that automatically 
set the regularization parameter. The Bayesian regularization works well if the 
input and the target data are ranged in [-1;1]. Therefore, the inputs and the targets 
have been normalized within the range [-1;1] before training as follows: 
 

ݔ ൌ 2
௫ି௫

௫ೌೣି௫
െ 1,                                        (6) 

 
where ݔ is the normalized value of each parameter and ݔ ,ݔ and ݔ௫ are 
respectively the measured, the minimum and the maximum values for the 
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considered parameter. In order to avoid the possibility of overfitting data, the 
experimental data are randomly divided into two groups respectively called the 
training set and the test set. The model has been implemented considering the 
only training data set constituted by 75 pct of the experimental data and it has 
been tested considering the test data set constitute by 25 pct of the experimental 
data (De Cooman [10], Cetinel et al. [11], Dobrzanski and Trzaska [12], Garcia 
et al. [13], Das et al. [14]). 

5 Model application and results 

The topological definition of the selected neural model started from the 
individuation of the main parameters that influence the selected forecasting 
outputs: the BH index and the UTS value. The strong influence of the two 
thermal treatments able to confer to the material the TRIP effect was considered, 
selecting as input of the neural network the temperatures and the times of both 
the IA treatment and the IBT treatment. The paint baking treatment was taken 
into account, choosing as an input the prestrain value, considering that the BH 
index is a function of the selected prestrain level. The operating parameters of 
the paint baking treatment were considered as constant and equal to 443°K and 
30 minutes. The variability of the chemical composition of steel was considered, 
inserting among the input the volume fraction of the retained austenite achieved 
after the IA end the IBT treatments. Each designed neural model therefore has 
six input parameters, as depicted in table 1. The considered outputs were the BH 
index and the UTS value. The Bayesian regularization used gives good results if 
the input and the target data are ranged in [-1;1]; for this reason, the inputs and 
the targets have been normalized, highlighting the maximum and the minimum 
values of each considered input and output. 
     The fitting capability of the neural model was investigated, designing 
different neural networks containing a variable number of the hidden units.  

Table 1:  Variation ranges of input and output parameters. 

 Max Min 
 

Inputs 

TIA (°K) 1086 1031 
tIA (s) 600 120 
TIBT (°K) 733 643 
tIBT (s) 960 120 
Prestrain (pct) 20 0 
Vret (pct) 16 4 

  

Outputs 
BH (MPa) 80 50 
UTS (MPa) 1050 790 
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     The selection of the best number of the hidden neurons has been made using a 
pruning algorithm that uses sensitivity analysis to quantify the relevance of 
inputs and hidden units proposed by Engelbrecht [15]. The obtained best 
performance allowed one to select the model with a complexity level able to 
optimize the forecasting capability of the neural network. The set of data useful 
for defining the training and the testing of each neural model were collected 
considering a wide experimental campaign, previously conducted, to highlight 
the influence of the IA and IBT operating parameters on the UTS and the BH 
properties of TRIP steel (Barcellona et al. [16, 17]). In order to enlarge the 
training and the test data set, experimental results also derived from literature 
data have been considered (Zhang et al. [18], Timokhina et al. [19], Wang et al. 
[20], Pereloma et al. [21], Kvačkaj and Mamuzić [22]). In order to highlight the 
trend of performance data at the varying of the number of the hidden neurons, 
eight neural networks differing in the number of the hidden neurons have been 
displayed in their training and testing phases. The detailed topology of each 
neural network is reported in table 2, in which the performance results are also 
summarized in terms of the correlation coefficient R between the forecasted and 
the experimental outputs. 
     In order to achieve a better readability of the obtained results, the outputs of 
each neural network have been post-processed; the linear regression between the 
network response and the target data allowed one to evaluate the fitting 
capability of the model to the experimental data in the training and in the testing 
phases. The evaluation of the regression coefficient R provided the degree of 
correlation between the experimental and the foreseen data. 
     Twenty-two hidden units offers a sufficient complexity level to best fit the 
experimental data. In effect, the observation of the values of the R coefficient of 
two outputs in the training phase evidenced that a lower number of hidden units 
is insufficient to best fit the experimental data, but the fitting capability increases 
with the increasing of the hidden neurons and it attains the maximum in the 
neural network model 6-22-2.  

Table 2:  Outputs correlation coefficients R of the training and the testing 
phases. 

Neural 
Networks 

Rtraining BH Rtesting BH Rtraining UTS Rtesting UTS 

6-5-2 0.495 0.397 0.523 0.497 
6-7-2 0.872 0.823 0.891 0.823 
6-10-2 0.883 0.842 0.918 0.882 
6-14-2 0.885 0.844 0.917 0.885 
6-20-2 0.919 0.897 0.920 0.902 
6-22-2 0.944 0.943 0.965 0.963 
6-24-2 0.943 0.932 0.958 0.950 
6-27-2 0.921 0.914 0.928 0.915 
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Figure 1: 

     This optimum of performances was found for both the considered outputs. 
The interpolation capability of the forecasting tool was also investigated in the 
testing phase by the evaluation of the performance coefficient R; a light 
decreasing of the fitting capability in respect to the training phase has been 
observed. 
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Linear regression between the network response and the target in the  
testing phase for the BH output parameter. 



     This difference becomes almost pointless for the best neural model. This 
tendency has been observed for both outputs.  
     The designed neural model shows better forecast ability for the UTS values, 
but the difference in the R values of the two output parameters tends to decrease 
when the number of neurons in the hidden layer approaches the best number of 
hidden neurons. 
     The image visualization of the results of the regression analysis in the testing 
phase, as depicted in figure 1, allowed one to evaluate how the forecasted data 
differs from the experimental data, and it directly shows the dispersion effect 
produced by the neural model in respect to the best fitting condition, represented 
by the 45° inclined line.  

6 Conclusions 

The main focuses of the automotive market are to guarantee safety and comfort 
while maintaining the light weight of the cars and preserving a good combination 
of strength and formability. These goals are achieved by the development of 
TRIP steels that posses the BH effect. In this research an ANN with a Bayesian 
framework able to predict the BH and the mechanical properties of the TRIP 
steels was designed. The neural approach allowed one to overcome the lack of 
prediction capability of the existing numerical models. The main obtained results 
are summarized as follows. 

 The selection of the best number of the hidden neurons has been made 
using a pruning algorithm that uses sensitivity analysis to quantify the 
relevance of input and hidden units proposed by Engelbrecht. 

 In order to highlight the trend of performance data at the varying of the 
number of the hidden neurons, eight neural networks differing in the 
number of the hidden neurons have been displayed in their training and 
testing phases. 

 The outputs of each neural network has been post-processed; the linear 
regression between the network response and the target data allowed 
one to evaluate the fitting capability of the model to the experimental 
data in the training and in the testing phases. 

 The observation of the values of the R coefficient of the outputs in the 
training phase evidenced that a low number of hidden units is 
insufficient to best fit the experimental data, but the fitting capability 
increases with the increasing of the hidden neurons and reaches the 
maximum in the neural network model 6-22-2. This optimum of 
performances was found for both the outputs. 

 The interpolation capability of the forecasting tool was investigated by 
the evaluation of the performance coefficient R in the testing phase. A 
light decreasing of the fitting capability in respect to the training phase 
has been observed. This difference becomes almost pointless for the 
best neural model and this tendency has been observed for both the 
outputs. 
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 The designed neural model possesses better forecast ability for the UTS 
values, but the difference in the R values of the two output parameters 
tends to decrease when the number of the hidden units approaches the 
best number of hidden neurons. 

 The graphic visualization of the results of the regression analysis 
allowed one to evaluate how the forecasted data differ from the 
experimental data and the degree of dispersion from the best fit 
condition. 
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