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Abstract 

The Monte Carlo approach based on minimisation of a potential including 
interface and volume energies has been implemented in the framework of a 
Eulerian interface tracking method in order to deal with 3D sintering of complex 
powder compacts. First applied to the unique spherical particle system, these 
new developments lead to a surface tension-induced pressure close to that 
theoretically given by Laplace’s law. The accuracy of this result is largely 
improved compared to those given by a classical fluid mechanics computation 
using the front tracking method. Our progress towards 3D modelling of sintering 
for realistic systems is illustrated by the computed stress gradients induced by 
surface curvature gradients within a small set of particles extracted from X-ray 
computed micro-tomography images of a real sample. 
Keywords:  stochastic methods, ceramics, image analysis. 

1 Introduction 

As regards the recent studies in modelling sintering processes [1–4], one can 
notice that it still remains difficult to deal with realistic particle arrangements 
systems. In fact, modelling of polycrystalline material sintering has only been 
handled in 2D [1, 2]. The only approach which would be powerful enough to 
overcome that difficulty is the phase field approach which is based on a diffuse 
definition of the interface [2]. Applied to 3D complex microstructure evolution 
only involving grain growth [5], no example of 3D many particle densification 
has up until now been shown. In the case of amorphous particles sintering, only 
2 [6, 7] or 3 particles were handled [8]. Apart from these deterministic methods, 
the Monte Carlo simulations based on the Potts model have exhibited 3D 
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microstructures evolutions [4] but remain too restrictive for precise morphology 
characterisation and realistic kinetics. The Monte Carlo methodology based on 
the non-discrete potential that we have developed was shown to overcome these 
restrictions [9–11]. Nevertheless, this methodology was only developed for 2D 
and 3D axi-symmetric configurations of particles, and therefore remains 
restrictive to deal with realistic arrangements of particles. Based on finite 
element discretisation, the main numerical difficulty to extend this approach to 
3D modelling was to readapt the tetrahedral mesh during calculation. So, to 
progress towards 3D modelling of sintering, this Monte Carlo methodology is 
now implemented in the framework of a Eulerian interface tracking method. We 
present here, the first 3D results, with the aim to show that it is possible to model 
sintering processes involving real particle arrangements that can be extracted 
from microtomography images of powder compact. 

2 Simulation method 

2.1 The Monte Carlo model 

The energetic model of the Monte Carlo methodology is defined in the canonical 
ensemble (closed system at constant volume and temperature) by the potential φ: 

s s vA Eφ γ= +      (1) 

Here γs is the surface tension, As its respective surface area and vE  the total 
volume energy of the system which includes the volume energy of the solid 
phase and the vapor phase. 
     The volume energy in eq. (1) corresponds to the sum of two 
terms: 0vE E Eε= + , where 0E  is the volume energy for the two-phase 
coexistence involving no interface tension, and Eε  is the excess of volume 
energy which is induced by an interface tension. This capillary induced excess of 
volume energy is quantified in the framework of elastic strain energy:  

 0
1 ( : )
2v V

E E E dVε− = = ∫ σ ε     (2) 

where ε and σ are the elastic strain and stress tensors, respectively. The strain 
tensor ε is related to the displacement vector of the fluid phase, and the stress 
tensor σ to the strain tensor through the elastic constants: the Young’s modulus 
EY and the Poisson’s coefficient ν. The minimization of the potential through the 
Metropolis algorithm allows the calculation of the stress gradient within the 
volume phase in relation to the surface curvature gradients. The hydrostatic 
pressure can thus be deduced from the relation: 

 1 ( )
3

p trace σ= −      (3) 

This stress gradient is the driving force for volume mass transport which will 
allow the power compact to sinter. 
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2.2 The Monte Carlo implementation  

The solid/vapor interface is discretized using a triangular mesh (fig. 1(a)) for a 
Lagrangian description of the interface motion. This discretized interface is 
placed within a fixed Cartesian grid (fig. 1(a)) for a Eulerian description of the 
two volume phases. On this grid a staggered mesh is used (fig. 1(b)). In the 
following displacements of the volume phase will be imposed on the u,v,w-grids 
for the calculation of the strain and stress tensors on the p-grid (fig. 1(b)). 
     The φ-potential is minimized using the Metropolis algorithm which proceeds 
in localized random changes of the total system configuration in order to induce 
potential variation mδφ of the system. The configuration changes are accepted 
with the probability 

P( mδφ ) =min (1, exp(- mδφ /kBT)),    (4) 
where kB is the Boltzmann constant and T the temperature. 
     Two types of random changes are considered (see [12] for a complete 
description of the method):  
 

- the first one concerns configuration changes by local elastic displacement 
of the two-phase system. At step m, when displacement only involves the 
volume phase deformation, three points located respectively on the u,v,w-grids 
(fig. 1(b)) are randomly chosen. Then, random displacements um, vm, wm, at 
step m, are respectively imposed upon these three points. For each of them (a = 
u or v or w), the variation of the strain tensor ,

m
a cδε  within the control volumes 

which are centered at the scalar points located backwards (c=b) and forward 
(c=f) can be calculated from the displacement vectors. The stress tensor ,

m
a cδσ  

can thus be deduced from elastic equation depending on the Young’s modulus 
EY and the Poisson’s coefficient ν.  
     At this stage the strain and stress tensors at step index m+1 can be 
calculated as: 1m m mδ+ = +ε ε ε , 1m m mδ+ = +σ σ σ . 
     Hence, the elastic strain energy variation mEεδ  which is determined from 

integration over the control volume ,
m

a cV  can be determined using the 
following equation: 

, , , ,
( , ) ( , ),( , ),( , ),( , ),( , ),( , )

1( ) :
2

m m m m
a c a c a c a c

a c u b u f v b v f w b w f

E Vεδ δ δ
=

= +∑ σ σ ε            (5) 

At step m, in the case of interface and volume displacement coupling, a 
Lagrangian marker i is randomly selected among the Nf interface markers 
(fig. 1b) and randomly displaced ( ,

m
f iu  is the corresponding displacement 

vector). This displacement vector is projected onto the Eulerian grid by 
choosing three points located in the vicinity of the i-marker on the u-grid, v-
grid and w-grid respectively (fig. 1). These three markers support the fluid 
displacement values mu , mv  and mw  along the X, Y, Z-directions respectively. 
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That volume-displacement also implies the movement ,
m
f lu of neighboring 

interface markers l of the i-marker. Interface area Am+1 at step m+1 can be 
determined from the new position of interface markers 

1 ,
, ( , ) , ( , ) , ( , )

m m E m
f a i l f a i l f a i l

+
= = == +x x u  allowing the calculation of the surface energy 

variation m
sEδ  at step m induced by the initial i-marker 

displacement 1( )m m m
s s s sE A Aδ γ += − . As a final point, the potential variation 

m m m
s vE Eδφ δ δ= +  at step m induced by elastic deformation can be calculated 

in order to determine the probability ( )mP δφ , defined by eq. (4), that the 
system configuration will change. 

 

- the second one concerns relaxation of the distortion elastic energy 
generated during the previous route, which involves no pressure variation. 
This is done by imposing small variation m

Dδε of the deviatoric part of the 
strain tensor εm. It allows the calculation of the potential variation 

D

m mEεδφ δ=  

for the estimate of configuration change with respect to ( )mP δφ . The function 
of the second route was shown to induce mass transport in relation to stress 
gradient [9]. To differentiate mass transport properties between the solid and 
vapor phases, the location of the interface within the Eulerian grid is required. 
Thus, a specific variable C, the phase function, is introduced. C equals 1 in the 
solid phase and 0 in the vapor phase. The interface location is defined by 
C=0.5. 

 
 

 
(a) 

 

 
 

(b) 

Figure 1: (a) The interface of the solid phase is discretized using a triangular 
mesh and is placed within a fixed Cartesian grid; (b) detailed 
visualization of the interfaced marker discretisation and of the 
staggered mesh used for the Monte Carlo calculation of the volume 
energy. , , , vectors parallel to the X,Y,Z-axis;  scalar 
points. 
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implementation 

The Monte Carlo calculations have been performed using the following values of 
elastic constants for the two volume phases (EY=4x106 Pa, ν =0), surface tension 
(γs=2.5x10-3 N/m) and temperature (T=1K). The initial strain tensor within the 
two phases was ε0=0. The spherical particle having a radius value R=2.5 mm is 
centred within the vapor phase limited to a cell of 10x10x10 mm3. At the limit of 
the cell imposed displacements equal zero, insuring during minimisation the 
condition of a closed system in which the φ-potential is defined.  
     The minimisation of the φ-potential (eq. (1)) can be followed through the 
evolutions of p1 and p0, the mean pressures within the particle and the vapor 
phases, respectively (fig. 2). The equilibrium state corresponds to the large 
plateau at the end of the curves. The pressures within the two phases are constant 
and homogeneous as it is shown in fig. 2 with the 3D visualisation of an 
equatorial section of the particle.  
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Figure 2: Curves: Evolution during the Monte Carlo minimisation (MCS = 
Monte Carlo Steps) of the mean value of the pressure p1 within the 
spherical particle and p0 within vapour for the 32x32x32 grid. 
Centre: 3D visualisation of the pressure difference ∆p=1.897 
between the two phases on an equatorial plane of the particle. 

     To analyse the accuracy of the Monte Carlo methodology in calculating the 
stress response to interfacial forces, we have compared (for the final equilibrium 
state) the pressure difference between the two phases 1 0( )NUMp p p∆ = −  with the 
exact solution given by Laplace’s formula 2 /th s NUMp Rγ∆ = , where RNUM is the 
numerical cylinder radius calculated from the Eulerian volume of the phase 
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function C. In fig. 3, the relative error (∆pNUM −∆pth)/∆pth versus the number of 
scalar nodes of the mesh grid axis N is plotted. This relative error is compared to 
that obtained with the Front Tracking approach [13]. The comparison analysis 
clearly shows that both methods, Monte Carlo and Front Tracking, have first 
order spatial convergences. A better accuracy is nevertheless obtained with the 
Monte Carlo model, which corresponds, for similar mesh size, to a relative error 
twice lower.  
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Figure 3: The Monte Carlo relative error (∆pNUM −∆pth)/ ∆pth for the pressure 
difference 1 0( )NUMp p p∆ = −  between the two phases with respect 
to Laplace’s law /th s NUMp Rγ∆ =  (RNUM being the radius of the  
phase function C), is plotted versus the scalar nodes of the mesh 
grid axis N and compared for equivalent criterion with the relative 
error obtained from the front tracking method [13]. 

4 Modelling of a real arrangement of particles extracted from 
microtomography image 

In order to show our progress towards real material systems modelling, we have 
performed calculations on a four-particle system (fig. 4(b)) extracted from a 3D 
image of a soda-lime glass sample (fig 4(a)) obtained by X-ray computed 
microtomography [14]. The microtomographic acquisitions were performed at 
the European Synchrotron Radiation Facility (ESRF, Grenoble, France) site on 
the ID19 imaging and diffraction beam line. The holes on the extracted particle 
surface corresponding to the contact between other surrounding particles have 
been closed for calculation feasibility. The surface tension considered for 
calculations are that of the soda-lime glass material [15] i.e. γs = 0.36 J/m2. The 
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elastic constants considered for the Monte Carlo calculation (EY=4x106 Pa, ν =0) 
are the same for the solid and vapour phases and thus have no physical meaning 
in the present case. As it can be seen on the micro tomographic image (fig. 4(a)), 
the glass material was characterised by a regular grain size centred around a 
radius of 60 µm. 
     The Navier Stokes resolution [16] of the microstructure evolution during 
sintering using the Front Tracking approach is presented in figure 5. The increase 
of the contact radius between particles until the contact coalescence as well as 
the pore closing is successfully modelled. This result highlights the numerical 
possibility of the coupled Eulerian/Lagrangian discretisation (fig. 1) to deal with 
3D interface movements and disappearances. Nevertheless, the relevance of the 
calculated sintering kinetics will depend on the accuracy of the surface tension 
induced pressure within particles which is the driving force for mass transport. 
Unless very fine grids are implemented, this accuracy is difficult to reach on 
Eulerian grids when very small interface curvatures are involved, as it is the case 
at the contact zone for early sintering times. To discuss about that point, the 
Navier Stokes and Monte Carlo pressure fields obtained for two sections of the 
initial particle configuration are compared in fig. 6. One can notice that 
important pressure variations are located at the contact zones going from tensile 
values in that zone to compressive values in the direction of the outer lobe of the 
particles. The average value of pressure difference (p1-p0) = 1.1x104 Pa between 
the solid and the vapour phases at the outer lobe of the particles interface is very 
close to that of Laplace’s law 2γs/a = 1.2x104 Pa, considering the mean value of 
the particle radius a= 60 µm.  
 

 
(a) 

 

 
(b) 

 
Figure 4: (a) X-ray computed microtomography image of a glass particle 

compact performed at European Synchrotron Facility (ESRF, 
Grenoble, France) [14]. The glass material was characterised by a 
regular grain size of 60 µm-radius; (b) four-particle system 
extracted from the powder compact for Monte Carlo and Navier 
Stokes calculations. 
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Figure 5: Navier-Stokes 3D evolution of the four-particle morphology during 
the sintering process showing pore closing and particle contact 
coalescence. 

     Now, the comparative analysis of the Monte Carlo and Navier Stokes results 
shows that the two tensile pressure peaks are clearly present in the three contact 
zones presented in fig 6 for the Monte Carlo simulation. They are sharp and 
located precisely just below the interface. The pressure gradient is regularly 
distributed in agreement with the Monte Carlo previous results based on the 2D 
Lagrangian volume discretisation. On the opposite, the Navier Stokes simulation 
leads in some cases to a unique broaden tensile peaks centred within the contact 
zone which are associated to no well-drawn pressure gradient distribution. On 
the basis of these results, the Monte Carlo calculation of the surface tension 
induced pressure, which results from potential minimisation involving 
displacement of the Lagrangian nodes, is shown to be more accurate than a 
method resulting from interface curvature calculation after projection on a 
structured grid non-conforming to the interface. The Front Tracking method thus 
induces an inaccurate macroscopic interpretation of the small-scale structure of 
interface, resulting from a simulation on a too coarse Eulerian grid.  
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Figure 6: Comparison between Navier Stokes (column A) and Monte Carlo 
(column B) resolution for a 64x64x64 grid of the hydrostatic 
pressure map within two sections of the four particle system. The 
pressure scale is p1=-104 Pa for white colour to p1=104 for black 
colour. 

5 Conclusion 

For the first time, the Monte Carlo numerical modelling dedicated to sintering 
processes have been implemented in an Eulerian fixed Cartesian grid framework 
in order to deal with 3D microstructures, the interface being tracked thanks to a 
Lagrangian grid. As a first step, the Monte Carlo simulations have been validated 
by comparisons to Laplace’s law. A first order spatial convergence, two times 
more accurate that the fluid mechanics Eulerian Front Tracking method, has been 
obtained. As a second step, the calculation of the pressure gradient within a four 
particle arrangement extracted from a 3D image of a real glass powder compact 
was shown to be accurately estimated even at the particle contact zone where 
low surface curvatures are involved. Our objective now is to couple stochastic 
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Monte Carlo and deterministic Navier Stokes approaches in order to obtain 
sintering kinetics as precise as possible to be compared with experimental data 
from microtomography. 
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