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Abstract 

Among the most popular reinforcement in soil mechanics of slopes is anchoring 
and nailing. In our experiments nails are applied; they are penetrated into the 
slope, it is loaded only by its volume weight. The material of the nails, as well as 
that of the slopes, is known from laboratory tests. This circumstance influences 
the distribution of stresses along the length of the body of the nail. Moreover, the 
position of the nails to the stability of the reinforced slopes is observed.  As the 
experiments are carried out in scale models, similarity conditions have to be 
obeyed. The technology of construction of experimental models is very 
important. Similarity rules are applied, but in this case no additional tests on 
physical equivalence of materials (real and that in the scale model) are necessary. 
As is well known that slope stability is a phenomenon which underlies the 
softening material behavior, i.e. the nonlinear behavior is concentrated along the 
slip curve. All kinds of nails are fully active after their mobilization. A different 
position of nails is considered to obtain the influence of this effect.  
     In numerical analysis and a priori integration method is fully used. Its 
application enables one to decide relatively quickly if the slope is stable or the 
measure of stability, the safety margin. Originally, the method was applied to 
stability of both homogeneous and nonhomogeneous slopes, streaming water and 
pore pressure influence on the slope stability. Here the influence of nails is 
considered by additional slip force along the slip surface. The force is calculated 
from comparison with the experimental data. The nails are introduced in such a 
way that they are long enough to cross the most dangerous slip curve possible.  
Keywords:  nailed slopes, scale models, a priori integration method, back 
analysis.    
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1 Introduction 

The concept of a priori integration of functionals of the classical method of slope 
stability assessment was published for the first time in [1] for the classical plain 
gravity model. Before these dates it was applied to the analysis of slope stability 
for the Prague Underground Railway and formed the subject of several thematic 
problems and improvement suggestions. Further possibilities of the method have 
been shown also in the solution of the earth pressure problem and a wide range 
of applications is found in [2]. 
     The formulation of the method is based on the combination of variation 
problems with the strip methods. In practice these slice methods depend on a 
single argument only and make it possible to express the functionals in the 
variation formulation in the form of functions. If we consider the very accurate 
interpretation of the values of functions by contemporary computers, it is 
obvious that a priori integration results not only in the acceleration of computer 
processing of stability problems, but also in increased accuracy of computation 
and subsequent determination of the form of the permissible shear surface and 
the safety factor value with any accuracy required. The error of the method 
resulting from introduced assumptions will not be eliminated, naturally, but will 
be reduced by the possible introduction of better contact assumptions. 
     Coupled problem have been solved in a couple of papers by Procházka and 
Trckova [3, 4]. Here internal parameters for a back analysis served design 
parameters of some optimization problems. The modeling from physically 
equivalent materials in stands (scale models) starts with papers [5–7]. 
Application of back analysis to stability of tunnel structures is described in [8], 
in [9], the stability of tailings (deposits) from open-pit mines is solved and in 
[10]. Identification of internal parameters using back analysis is studied in [11].       

2 Basic principles of a priori integration method (AIM) 

The idea of the AIM arose from the needs of design practice. In the design of big 
excavations or embankments which occurred, e.g., in the construction of the 
underground railway it was found suitable to base the actual design on 
parametric studies depending on the simplified geometry of the slope and the 
geotechnical parameters of the soil of which the slope consists. Computations 
have shows explicitly that for reasons of final assessments of slope stability it 
was impossible to use modern numerical methods (finite element method, 
boundary element method). However, classical slice methods did not appear 
entirely suitable, either. Modern methods need more computational time, while 
slice methods are numerically unstable and do not enable the application of 
minimization strategy for a more accurate stability coefficient computation. 
     One of the possibilities of elimination of these shortcomings consists in the 
application of the AIM, e.g., to the classical plain gravity model which has the 
advantage of explicit expression of the stability coefficient on the given shear 
surface, can easily be extended to three dimensions and involve other influences 
on the slopes. 
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     Before presenting the initial formulas we introduce some symbols and 
assumptions. First we will deal with two-dimensional problems in Oxy 
coordinate system. In practice it is advantageous to locate the origin of the 
coordinates O at the toe of the slope. The application of the AIM consists in 
expressing the problem in functional form. For the classical model, for instance, 
we seek the stability measure (safety factor) on a concrete admissible shear 
surface with the understanding that the safety factor is the minimum of stability 
measures. Moreover, in the AIM we express the functionals for a fixed shear 
surface in the form of functions. This can be achieved, e.g., with the assumption 
(frequently used in engineering practice) that geotechnical parameters are 
homogeneous and isotropic by parts (by layers). In our case homogeneous 
medium is considered, as the influence of nails is studied in the scale model.  
     Let )(xty = be the boundary of the slope surface (terrain) and )(xfy =  
describe the shear surface the admissible form of which is a part of the circle. In 
order not to complicate the explanation, let us assume that f is a function, i.e. 
that there is just one value of y  for every x within the admissible interval. The 
generalization of this assumption is not connected with any difficulties. Further, 
in accordance with the principal idea of the model (equilibrium on the fixed 
shear surface together with the respective denotations is shown in Fig. 1) it is 
possible to define the safety factor F on the shear surface as follows: 
 

T
CNF +

=
φtan                                            (1) 

 
where  TN   and   are the normal and tangential components, respectively (with 
reference to the shear surface) of the unit weight of the soil above the shear 
surface, φ is the angle of internal friction (shearing resistance) and C  is the 
cohesion. 

 

Figure 1: Equilibrium of forces on the shear surface in the gravity model. 

     The most probable location of the shear surface and simultaneously the safety 
factor value (minimum safety factor) are determined by the minimization of the 
values of F , i.e. 
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FF  minimum 0 =                                                (2) 
 

where the minimum is considered across all admissible shear surfaces, i.e. such 
circles for which the set of those x for which 
 

0])(  )([)( ≠= + xf-xtPxS                                         (3) 
 

is not empty. In the definition of the function S we have introduced the 
Heaviside operator 
 

otherwise       0][       , 0for     1][ =>= ++ aPaaP                      (4) 
 
     The condition (3) means that the diagrams of the functions ft    and    and 
intersect at least in two points and )()( 00 xfxt > at least for one 0x . The 
condition (2) determines the form (or, to be exact, the location) of the shear 
surface along which the slip will occur most probably, if the safety factor 0F is 
lower than the respective safety factor of the slope, determined either by a 
standard (EC7-1, DIN, CSN), or by the designer's experience. If the safety factor 
is higher than this number, the slope can be considered stable. 
        Now we can express the individual terms in (1) as follows: 
 

∫ ∫

∫∫ ∫
∞

∞−

∞

∞−

∞

∞−

=

==

)(

)(

)(

)(

d d )()()(tan),()(tan                 

d )(
)(
)()(           ,d d )()(),()(

xt

xf

xt

xf

xyxSxqxyxfN

xxS
xq
xcfCxyxSxpyxfT

φγφ

γ

         (5) 

 
where  γ  is the volume weight of the soil, c  is the cohesion, and 
 

21)(   ,)( pxq
R

xxxp C −=
−

=                                   (6) 

 
where ),( CC yx are the coordinates of the center of the slip surface and R is its 
radius. Note that the functions qp   and   in (6) are the sine and cosine, 
respectively of the angle α  between the tangent to the slip surface at the point 

))((,( 22
CxxRRx −−− and the axis x  (see Fig. 2). The material constants 

c   and   φ can be entered as residual or peak values. In this way it is possible to 
consider also the influence of deformation. Description of the geometry and 
subregions, the procedure of the AIM can be applied, is seen from Fig. 2. Roman 
numerals denote homogeneous and isotropic subdomains (elements), Arabic 
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numerals describe the vertices of element boundaries. It can easily be verified 
that the formulas (5) correspond with the relations of the gravity model for the 
case of limit transition in the meaning of the Riemann integral definition. 
     The cases most frequently occurring in practical computations are the cases of 
soil mass, the boundary of which can be approximated by a polygon and the 
material of the mass is homogeneous and isotropic in parts, while these parts 
(subdomains) are also bounded by polygons. 

 

Figure 2: Topological relations of the AIM. 

 

Figure 3: Geometry of the simple slope. 

     In order to study the influence of reinforcing nails, simple slope, i.e. a 
homogeneous isotropic slope without benches, see Fig. 3, is considered, and the 
slip curve meets the toe of the slope, i.e. points 1 and 4 are identical. This is the 
case of slopes with steeper toe angles. Our aim is the computation of the values 
of integrals (5) for the latter case. As in this particular case c and  ,φγ are 
constant, so that it holds that 
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where superscripts ij stands for abscissa or circle of the slip line i – j, i, j =1,2,3. 
Furthermore, in the last equations ii yx   and   are coordinates of point i. 
Substituting for the slope 1 - 2 and ridge 2 - 3 yields 
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where   k0 is the value of the slope and q0 is the height of the ridge. We ascertain 
that the explicit expressions of T, N tan ϕ  and C is split into an algebraic sum of 
influences of individual abscissas forming the boundary of the slope and its 
individual layers and the parts of the circles forming the slip surface.  
     Before coming to the explicit expression of influences from the integration 
over an abscissa or a circle it is advisable to introduce substitution (parameter p 
stands for sine of the angle α ) and formulate functions: 
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     Now it easily follows that the influences from integrations below the 
abscissas can be expressed as (denoted by brackets): 
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     In case of circular segments are considered the following formulas can be 
derived:  
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where 2  , RBRyA C γγ == . The loading from above the ridge is taken into 
volume weight, while the influence of the nail (nails) is an additional shear force 
at the cross of current slip circle and the nail. The value of it follows from the 
experiments. If instead of a nail a geotextilie is put into the material of the slope, 
one force is needed to explain the influence of the reinforcement on the stability 
of the slope. This is not the case, so that a different number of nails is necessary 
to consider. The aim of the coupled modeling consists in tuning the numerical 
model, turned to a programming code, in such a way that the influence of the 
nails can be identified with high accuracy.  
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3 Physical modeling 

Physical modeling is important for the study of effects taking place in soil mass 
in connection with construction of underground structures. The modeling allows 
us to investigate mechanisms of geotechnical phenomena, predicts stress changes 
and their demonstration during various progress of underground construction and 
also during simulation of operating conditions. 
     Basic rules of the experimental modeling and formulation of the mechanical 
conditions for modeling come from the principles of geometrical and physical 
similarity which is inferred for a consideration of dimensional analysis, [6–8]. 
According to the Buckingham theorem, [6], the dimensional equation for the 
relation between reality and the model can be reduced to the problem of finding 
relevant non-dimensional parameters. Equations can be determined, their 
arguments are dimensionless.  
     The physical model has to obey geometrical similarity; this is the 
proportionality of dimensions and the identity of angles between the model and 
modeled object in the whole range of the model.  
     The type of modeled geotechnical problem and its extent, possibility and 
technique of bringing forces, time factor and other aspects, technical 
possibilities, assign linear scale of the model. It is the aspect ratio in which 
length dimensions of the model are reduced against the reality. Note that the 
similarity being valid for slope stability assessment can be found in [11]. The 
models are constructed from mixture of various, mostly easy available materials 
(e.g. sand, bentonite, ballotine, gypsum, mica - vermiculite, composite mortar, 
cellular concrete and water).  
     The models are constructed in stands of various dimensions in dependence of 
solving problem and scale of the model. Compact structure of the stand is 
formed by reinforced frame performing no deformation of it during the model 
test. Front wall of the model stand can be glassed to observe and measure 
deformation of the model.  

4 Example  

Slope 1:1.5 (length:height) is considered in the scale of 1:100. The slope obeys 
the similarity laws according to the previous section. Physically equivalent 
material is selected to be in compliance with selected real slope as: Mixture of 
ballotine and fat is the basic material for the laboratory tests in stands, the 
contents of ballotine was 99.87%, fat A00 was 0.125%. As the filling quartz sand 
with granularity of 1-7 mm was used. The stand is 1.5 m x 1 m x 0.5 m. Material 
properties of the slope are listed below:   
Volume weight                           1.707 g/cm3 
Cohesion                                     0.722 kPa 
Angle of internal friction         24° 
Oedometric modulus E                  5 560 kPa 
Coefficient of compressibility   152 
Tensile strength             5.1 kPa 
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Density of the sand                       1.93 g/cm3 
Density of saturated sand               2.16 g/cm3 
     In the following pictures stands with different stages of loading and 
reinforcements are shown. The loading from above the ridge was applied to tune 
the material properties of the aggregate in the model (the slope created from the 
physically equivalent material together with a nail). The nails have been prepared 
from a chip of bamboo, unified in the shape and dimensions, their shear strength 
is known, so that the resistance force due to a nail is also given. Influence of load 
to the safety margin is depicted in Fig. 4. 
 

 

Figure 4: Relation load and safety margin.    

 

Figure 5: View of stand with the slope loaded from above and with the first 
position of a nail. 

     Two basic positions is horizontal set of nails were prepared. The first is seen 
in Fig. 5, it should help to stiffen the upper part of possible slip surface (curve). 
As is well known, this is the most advantages position, since the slopes in 
general start their damage along the ridge. The first loading step is also seen 
from this picture.  
     In Fig. 6 the second position of reinforcement is depicted together with 
obvious movement of the ridge. Also in the upper right part of the slope partial 
damage is highlighted and according to the assumed shape of the slip curve the 
safety margin is derived.   
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     It appears that for upper position of the nail one nail bears 12.29 kg load, two 
nails 16.15 kg and the necessary number of nails for higher value of the load can 
be extrapolated. For the lower position (second case) of the nail, one nail bears 
only 7.12 kg, two nails 9.78 kg etc. The bearing capacity is considered for safety 
margin 1.3, as most of standards consider. 
     It is worth noting that this approach for the identification of appropriate 
structure of slopes with reinforcement by nails can be applied to various types of 
slopes, even in non-homogeneous mediums. For this case and the AIM see [11].    
 

 

Figure 6: The second type of reinforcement, slip curves highlighted.  

5 Conclusions 

Coupled modeling, experimental in stands and numerical using the AIM is 
shown on model examples of reinforced slopes by nails. This simple algorithm 
involves very user-friendly algorithm of the AIM and relatively simple and 
cheap modeling in stands. Tuning of numerical models using results from 
experiments enables engineers to assess this type of structures with relatively 
high accuracy and very fast.  
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