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Abstract 

An iterative algorithm has been developed to establish the adiabatic heating 
correction of flow curves for torsion tests of an ultrahigh carbon steel containing 
1.3% C. High temperatures (1223 to 1473 K) and high strain rates (2, 5, 10 and 
26 s-1) were used.  The curves are corrected in a finite and discrete set of strain 
data by means of parametric derivatives and integration on the initial curve 
without correction. The process is repeated until the termination tolerance for the 
stress is less than 10-2 MPa. Usually, four iterations are needed to reach this 
tolerance. The corrections are bounded by the maximum of mechanical energy 
available to be converted into heat. The corrections are carried out until a true 
strain ε = 4 in order to avoid the effects of flow localization in the material. 
Keywords:  adiabatic heating, torsion test, modelling, simulation, Garofalo 
equation, hot working. 

1 Introduction 

Torsion tests at high temperatures and strain rates of materials usually show a 
strong increment of temperature during the test above the programmed 
temperature that is attributed to adiabatic heating [1]. The temperature correction 
due to adiabatic heating has been discussed in various works [1–6]. The 
following expression is usually considered: 
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where T is the test temperature, C is the specific heat capacity, ρ is the density, η 
and A are efficiency coefficients of the energetic conversions and )(εσ  is the 
stress-strain relation.   
     Some authors assume a variable energy performance in eqn (1) [2] or a 
constant one [6]. Other authors use the relation )(εσ without considering the 
intrinsic error due to the adiabatic heating itself [3]. In general, it is not 
considered that determination of the term )(εσ  implies derivatives at constant 
temperature, which is not true under the effect of adiabatic heating. These 
derivatives appear in the calculation of the strain rate sensitivity and the strain 
hardening coefficients.  In addition, constant values for ρ  and C are used in the 
entire working range. 
     In this work, we consider the following expression for determining the true 
value of the corrected relation cσ , in contrast to the experimental value wcσ : 
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where ξ∆  is the error associated to the experimental value of the stress that 
should be bounded to avoid wrong answers. 
     The goal of this work is to design a modular and iterative algorithmic method 
that guarantees the convergence of the experimental function ( )wc

iσ ε  to the 
nominal function ( )c

iσ ε . This method is based in eqns (1) and (2). The validity 
ranges of the algorithms are adjusted taken into account physical fundaments on 
flow localization [3,5] and bounds of the performance for the conversion on 
mechanical energy into heat.  

2 Material and experimental procedure 

The UHC-1.3%C steel studied in this investigation has the following 
composition: 1.3% C, 0.5% Mn, 0.6% Si, 0.18% Cr and balance Fe [1]. The 
manganese was added to neutralize the deleterious effects of sulphur and 
phosphorus. The steel was obtained at Sidenor Industry as a cast of 8 litres by 
means of an induction furnace. The as-cast ingot was initially soaked at 1050ºC 
and forged into a bar of 60 mm x 55 mm cross section.  
     Simulation of the forming process of forged parts was carried out by means of 
torsion tests. An induction furnace heats the test sample and the temperature is 
continuously measured by means of a two-color pyrometer. A silica tube with 
argon atmosphere ensures protection against oxidation. A helium atmosphere is 
used to obtain, after testing, a cooling rate of 325 K/s. 
     The torsion samples have an effective gage length of 17 mm and a radius of 3 
mm. The density and specific heat are 7800 kg·m-3 and 670 J·kg-1·K-1, 
respectively. Strain rates in the range 2 to 26 s–1 were used. The temperature 
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range was 900 to 1200 ºC. The samples were deformed in a SETARAM torsion 
machine at CENIM (National Center for Metallurgical Research) in Madrid, 
Spain. 

3 Theoretical approach 

Two main processes limit the conversion of mechanical energy into heat in an 
adiabatic framework: changes in the internal energy of the material and flow 
localization. Both processes are related to the start of catastrophic failure [2–4]. 
A differential expression for the first law of thermodynamics 

mstdudTcd +⋅⋅=⋅ ρεσ  where mstdu  is the variation of the microstructural 
internal energy can be considered. The plastic work carried out by the material is 
transformed into heat that is used to increase the internal energy of the material. 
Some authors assume 0=mstdu  [3]. Other authors consider 0≠mstdu  leading 
to the general expression [2]: 
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where ( ) [ ]( )εσεεη dduT mst⋅−= )1(1,,  is the performance of the conversion 
and it is variable. A constant value for η  of 0,90 or 0,95 may be taken but an 
iterative procedure would be necessary to eliminate the effect of this 
approximation.  
     The approach of Prasad et al. [4] is convenient to estimate the upper limit 
bound of the increase of temperatures due to adiabatic heating. A simple 
constitutive equation for the energy dissipation is the following: 
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where G is the dissipator content and J is the dissipator co-content. Part of the 
power dissipated by the plastic flow, G, can be converted into heat. The quantity 
J is related to the processes of form change. The limit for G is 

2)( maxmaxmax εσ ⋅=G . The following expression can be deduced from eqn (4): 
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that represents the limit for the adiabatic T∆  in a volume V. 
     The increment in temperature can be expressed as [3]: 
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where η  is constant and 'pε  is the deformation limit where the plastic 
instability starts [3].  Therefore, a critical deformation can be considered above 
which it is not possible to apply this kind of corrections [5].  Values of 

KddT 165=ε from eqn (6) are obtained for the UHC-1.3%C steel.  
     Assuming the analysis of Armstrong et al. [3] and considering the stress- 
strain relation θεσ .1K= , together with the definition of the stress exponent, n, 
in the Garofalo equation and the definition of constant strain rate tests, 

tpp ⋅= εε , the condition for plastic instability gives the following equation: 
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     Under stability conditions, 0>σd . The instability starts at 0=σd , that can 
be expressed as [7, 8]: 
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     Under adiabatic heating conditions, and assuming ε  constant, by means of 

the Garofalo equation ( )
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expressions into the plastic instability condition, an expression for the flow stress 
at which the instability starts, inσ , can be obtained: 
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This expression will be applied later to the UHC-1.3%C steel. 

4 Basic methodology 

The following assumptions are used in the algorithm developed in this work: 1) 
adiabatic conditions in the deformation process, 2) ρ  and C do not vary with T, 
3) η  and A are constant with strain, and 4) adiabatic heating has an important 
effect from the peak stress of the curve ( )σ ε , to a value fε . 

     For a given test at constant jε  and sT , the initial temperature, and for a given 

value of ε , the uncorrected stress, 0
wcσ  (experimental stress), can be expressed 

as a function of the corrected stress, 0
cσ , as: 
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0 0( ) ( )wc cT T Tσ σ= + ∆                                        (10) 
 

     Applying Taylor expansion of the function 0
cσ  in eqn (10) about the point T:  
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where it is assumed that 0 0

wc cT Tσ σ∂ ∂ ≈ ∂ ∂ .  
     On the other hand, the temperature increment for each measured strain iε , for 
a given test at constant jε , can be expressed as: 
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     Substituting eqn (12) in eqn (11): 
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     A single time application of these equations would result in a value of 

( )0 , ,c Tσ ε ε  that is not accurate. This is due, as mentioned in the introduction, to 

the associated error in the determination of 0
wcσ  and consequently in the integral 

part of eqn (13). Furthermore, calculation of ( )0 , ,wc T Tσ ε ε∂ ∂  in eqn (13) is 

also not accurate since the function ( )0
wcσ ε is a warped curve in the space 

{ }T,,σε . 
     To minimize the inaccuracies of the calculation carried out in eqn (13), an 
iterative algorithm based in eqns (11) and (12) has been developed using as 
initial value the stress ( )0 , ,c Tσ ε ε .  It is a modular algorithm in three steps.  In 

the first step, the value of ( )k iT ε∆  in the iteration k (from k=1 to the number of 
iterations) is calculated according to the following expression: 
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where 1

wc
kσ − , is the uncorrected stress in the iteration k-1, and 1

c
kσ −  is the 

corrected stress in k-1. The integration interval is divided in sufficiently enough 
small parts.  In this work, we have worked step by step with all the output data 
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given by the machine. Therefore, a trapezoidal rule is used in order to compute 
the numerical integration in eqn (14). 
     In the second step, the partial derivative with respect to T of the uncorrected 
stress, ( )

,
, ,wc

k i j T T
ε ε

σ ε ε∂ ∂  in the iteration k, is calculated by means of the 

expression: 
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where 1s +  refers to the test conducted at the same strain rate but at a 
temperature Tk+1, belonging to the temperature set { } 1,s s NT

=
, that is next in the 

ascendent sequence. This approximation is good enough since the discretization 
intervals are small. Finally, the value of the corrected stress in the iteration k is 
given as: 
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     The criterion adopted for stopping the algorithm, i.e. the termination 
tolerance, is MPa210−≤∆σ  for a given control strain. By means of this 
procedure, the final measured temperature is reached at a given iteration for a 
value ε  but the correction is used only up to fε , a value at which the flow 
localization is not considered important to distort our correction. 

5 Results and conclusions 

5.1 Analytical basis 

The results obtained in section 3 for the bound limits are applied in our model to 
establish the adiabatic correction of the UHC-1.3%C steel. For this steel, at 

110 −= sε  and T=1323 K, the peak stress is MPa100max =σ  and, according to 

eqn (5), KT 172max =∆ . For 12 −= sε  and T=1323 K, KT 24max =∆ . This 
gives an idea of the upper bounds of the uncorrected values. 
     Using the data of Castellanos et al. for this steel [9], the relation 

TeKT ⋅−⋅= 0037,02)(σ is obtained. The values of the Garofalo equation are: 

Q=274,3 kJ/mol and n=4,66. A value 2.0−≈θ  is obtained for an integration on 
all deformation paths. For comparison, it was obtained for 5,1=ε , 11.0−≈θ  
and '( ) 28 'p p pdT d Kε ε ε=  and for ε  next to the peak, 0≈θ  and 

KddT ppp '58)( ' εεε = . 
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     Table 1 shows the limit strains, '
pε , for the start of plastic instability or flow 

localization for the UHC-1.3%C steel.  The values were calculated by means of 
eqn (9) using 2.0−=θ  and 90,0=η . The values '

pε  are determined in the 

point where the experimental curve )(εσ  cross the curve ( )εσ in .  The table 
shows that the plastic instability is delayed at high temperatures and low strain 
rates. 
     It is worth noting that the local instability develops progressively with plastic 
strain. At ε =5 a clear change of behavior of the flow curves is observed 
characterized by oscillations of the derivates of the stress with respect to the 
strain. A value of =fε 4 was chosen because up to this value the corrections 
were meaningful.  

Table 1:  Limit strains, '
pε , for the start of plastic instability for the UHC-

1.3%C steel as a function of strain rate and temperature.  

T(K) from eqn (9) 12 −= sε  15 −= sε  110 −= sε  126 −= sε  

1223 εσ /7.52=in  0.45 --- 0.3 0.3 

1273 εσ /1.57=in  0.6 0.5 0.45 0.4 

1323 εσ /7.61=in  0.8 0.65 0.55 0.45 

1373 εσ /4.66=in  1.05 0.8 0.7 0.5 

1423 εσ /3.71=in  1.5 1.2 0.9 0.7 

1473 εσ /4.76=in  1.9 1.5 1.1 0.9 

5.2 Correction of flow curves for the UHC-1.3%C steel 

The flow curves of the UHC-1.3%C steel have been modified to consider the 
adiabatic heating.  The curves were conducted at =ε  2, 5, 10, and 26 s-1 and T 
from 1223 to 1473 K, with a variation of 50 K. A maximum of four iterations 
were conducted for the attainment of the final measured temperatures for 

[ ]8,6∈ε  although the corrections were carried out up to =fε 4.  
     Figure 1 shows true stress vs. true strain curves at various strain rates and 
temperatures for the UHC-1.3%C steel.  
     The solid lines represent the correction for adiabatic heating according to eqn 
(12).  The corrections agree with those carried out by other authors [10, 11].  
However, somewhat different results were obtained when compared with other 
investigations where unreliable approximations were conducted [12, 13].  
     Figure 2 shows the evolution of T∆ , according to eqn (11), with strain for 

126 −= sε  at various temperatures.  All the temperature increments are inside 
the bounds established for the maximum increments.  The convergence of the 
iterative algorithm was reached at a maximum of four iterations. 
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Figure 1: Flow curves for the UHC-1.3%C steel. Solid lines are corrected 
curves for adiabatic heating and dotted lines are uncorrected 
curves. 

 
 

 

Figure 2: Evolution of T∆ with strain for several 0 'T s  at a ε =26 s-1. 
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Table 2:  Values of σ∆  at 1=ε  (a) and 3=ε  (b) for the corrected tests. 

(a) 1223 K 1273 K 1323 K 1373 K 1423 K 1473 K 
12 sε −=  5.38 2.06 1.91 1.85 0.9 0.9 
15sε −=  --- 3.68 2.69 1.39 1.15 1.02 
110 sε −=  5.44 2.17 2.62 2.34 0.86 0.99 
126 sε −=  6.54 2.76 2.49 2.37 1.41 1.28 

(b) 1223 K 1273 K 1323 K 1373 K 1423 K 1473 K 
12 sε −=  12.16 6.21 5.90 5.70 3.32 2.79 
15sε −=  --- 8.92 9.25 6.08 3.08 2.67 
110 sε −=  14.11 8.46 6.32 7.57 3.48 3.29 
126 sε −=  16.81 9.4 7.73 7.78 7.32 6.23 

 
     Table 2 shows a summary of all the results obtained in this work. The 
accumulated values of σ∆  are given for each pair { }T,ε  at ε = 1 and 3. Values 
at 6,5=ε  are higher but were not considered due to flow localization. 
     It can be concluded that the method, and the implemented algorithm, that we 
have developed in this work is reliable and convergent.  The corrected stress-
strain curves are efficient and reliable and take all the experimental data set 
without the need of average approximations.  In addition, the method provides 
the detailed corrections at the discretization level given by the machine. 
     The main conclusions of this work are: 
1. A new iterative approach for the adiabatic heating correction for torsion tests 
has been established. It is a natural generalization of a previous approach where 
the correction was carried out in a single run.  
2. The new approach brings an improvement in the precision of the corrected 
flow curves.  The relative errors associated to determination of the experimental 
stresses are minimized.  
3. The temperature increments obtained for the UHC-1.3%C steel are inside the 
bounds established for the maximum increments due to adiabatic heating. 
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