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Abstract 

In this paper the dynamic response of the asymmetric orthotropic composite 
laminated beam subjected to moving masses has been studied. Through a one-
dimensional finite element having 24 degrees of freedom the effects of 
extension, bending, and transverse shear deformation are studied without losing 
the Poisson's effect. In order to preserve the characteristic coupling including 
bend-stretch, and bend-twist coupling the lateral strains and curvatures are 
presented on the basis of axial and transverse strains and curvatures. The 
dynamic responses of symmetric isotropic laminated beams under the action of 
moving masses have been compared to the experimental results. This study uses 
the higher order shear deformation theory that can be employed in the study of 
force and free vibration problems. 
Keywords:  moving masses, dynamic response, composite laminated beam, 
higher order shear deformation, rotary inertia. 

1 Introduction 

A lot of papers can be found on the theoretical [1-3], experimental [4-6], and 
numerical [7-13] analysis of traditional beams and plates under the action of 
moving masses, but on the study of the composite laminated beams under the 
action of moving masses few researchers have worked [14].  
     In this article to study the dynamic response of an orthotropic composite 
laminated beam under the actions of moving masses, a solution based on a finite 
element method has been developed. The algorithm also accounts for the shear 
deformation, the rotary and higher-order inertia effects, A conforming beam 
element based on Hermitian interpolation function that satisfies C1 continuity 
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condition, has been used. The time variable is evaluated by using the Newmark-
method [15]. The algorithm presented in this paper can be applied to the moving 
masses with a constant speed motion or constant acceleration motion, for three 
deformation theories; Classical lamination theory (CLT), First shear deformation 
theory (FSDT) and Higher-order shear theory (HOST). As a part of this study, a 
computer code has been developed to analyze orthotropic unsymmetrical 
composite laminated beams under the action of moving masses that are more 
efficient than the other general purpose FEA codes for this specific problem.  

2 Basic assumptions and governing equations  

In the present study of CLT the small deflection theory of bending of thin 
laminate based on following assumptions are used: 

a) The displacements of the midsurface are small compared with the 
thickness of the laminate and, therefore, the slope of the deflected 
surface is very small and the square of the slope is negligible compared 
to unity. 

b) The Kirchhoff-Love assumptions are used, thus plane sections initially 
normal to the mid-surface remain plane and normal to the mid surface 
after bending. 

c) The transverse normal stress is small compared with the other 
components therefore, can be neglected. There are a large number of 
plate theories that include transverse shear deformation. In present study 
two displacement-based theories, FSDT and HOST have been 
developed for consideration of shear deformation. 

     In the FSDT the assumption that mid-plane normal remains normal after 
deformation (assumption b) is relaxed to mid-plane normal remaining straight 
after deformation and need not be normal. In this theory the shear correction 
factor will be needed to satisfy the stress-free boundary conditions. Finally the 
higher-order shear deformation based on Reddy’ s third-order shear deformation 
[16,17] not only includes transverse shear as in the case of the FSDT but also 
accounts for a parabolic variation of transverse shear through the laminate 
thickness, and hence there is no need to use the shear correction factor as in the 
FSDT. Also in the present study based on assumption a and b, further 
simplifying assumption given by W= Wb+Ws where w is the transverse 
displacement, TD, of the mid-plane and Wb and Ws are its components due to 
bending and shear respectively, are made to Reddy’s theory so that the number 
of variables reduced by one. Consider a laminated beam made of a number of 
layers with its computational coordinates (x,y,z) which are interactive by moving 
loads. The moving loads and beam are considered as a single system and the 
transverse inertia effects of moving loads are fully accounted for. Each lamina 
made of a unidirectional fiber-reinforced material is considered as a 
homogeneous orthotropic material. Orthotropic axes of symmetry in each lamina 
of arbitrary thickness and elastic properties are oriented at an arbitrary angle 9 to 
the beam axis. The moving masses travel at an equal constant velocity or an 
equal initial velocity and acceleration. Fig. 1 shows a composite laminated beam 
and the moving masses schematically where L is the beam length, b is the beam 

© 2005 WIT Press WIT Transactions on Engineering Sciences, Vol 51,
 www.witpress.com, ISSN 1743-3533 (on-line) 

24  Computational Methods and Experiments in Material Characterisation II



width, t is the total thickness of beam; i is the number of moving masses, E is the 
position of the first moving mass with respect to x-direction; L is the distance 
between the first moving mass with i-th moving mass along x-direction; m = 
mass of i-th moving mass; Yo = position of moving masses with respect to y-
direction (for this study yo=0); n total number of moving masses; δ= Dirac Delta 
function. Applying the variational method for continuum media, the equations of 
motion, according to, the displacement field based on Reddy’s third-order shear 
deformation, can be found as:  

 
 

 
Figure 1: The composite laminated beam moving loads model. 
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In the above equations the coefficient s is a constant factor which by setting s=1 
the displacement field of HOST can be achieved, and s=0 leads to the 

displacement field of FSDT and by setting 0, ,x y
W Ws
x y

ψ ψ∂ ∂
= = − = −

∂ ∂
the 

displacement field of the CLT can be obtained. Also q is the distributed 
transverse load, m is the mass of i-th moving load, and Ni, N and Pi (1=1,2,6) are 
stress, moment and higher-order stress resultants, respectively which can be 
found in [l8,19]. Qi* and Ri (i=1,2) are the stress and higher-order shear stress 
resultants defined as follows: 
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In Eqs. (1), I0,I1 and I2 are normal, coupled normal-rotary and rotary inertia 
coefficients and I3,I4 and I6 are the higher-order inertia coefficients as defined in 
[18,19]. Using constitutive relation for a composite laminate, one may find the 
resultant forces and moments in terms of displacements for HOST as: 
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Matrices A,B, and D are extensional, bending-extensional (coupling) and 
bending stiffness coefficients and matrices E, F and H are higher-order stuffiness 
coefficients that can be observed in [18,19]. Similarly, the resultant shearing 
forces can be found by using the corresponding constitutive relation in terms of 
displacements:  
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In Eq.(5) the components Dij* of can be found as:  
Dij*= Aij*+2 Dij+ Fij                                                        (6) 

where:  
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In Eqs. (7), Qij are transformed reduced stiffness [20]. For beams, it can be 
assumed that the lateral strains are zero or lateral resultant forces are negligible. 
The first assumption is valid for beams with solid cross-section [21-22]. 
     Second approach means lateral resultant forces are assumed to be zero: 

 N2=0 , M2=0 , P2=0                                               (8) 
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Combining Eqs. (4) and (8) and determining corresponding lateral strains in 
terms of other strains, Eq.4 may be simplified as 

{ } { }TR D ε=                                                  (9) 
The reader may refer to [13-14] for more details of driving this last equation.  
     By equating Q2

** = 0, the above linearization procedure is completed and Eq. 
(5) is also simplified as follows:  
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Now by combining Eq. (9) and Eq. (10), the relation between resultant forces 
and generalized displacements may be written in its final form as: 
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The advantage of above approach is that a two-dimensional beam theory is 
reduced to a one-dimensional theory without ignoring the Poisson’s effect. 

3 Finite element formulation  

In order to develop the finite element models of the laminated composite beam 
and moving loads, displacement models are used. The displacement finite 
element formulation of composite beams is based on the principle of virtual 
displacements where all governing equations are expressed in terms of 
displacements. In this section, a finite element model for HOST is developed by 
using Hermitian cubic interpolation function. Then finite element formulation for 
FSDT and CLT can be found as special cases. The field variables in the dynamic 
case for HOST can be represented as:  

4 4 4

1 1 1

4 4 4

1 1 1

( ),     ( ),     ( ),

( ),   ( ),    ( ),

i i x xi i b bi i
i i i

s si i b bi i s si i
i i i

u u H x H x w w H x

w w H x H x H x

β β

λ λ λ λ

= = =

= = =

= = =

= = =

∑ ∑ ∑

∑ ∑ ∑
              (12) 

where sibisibiii WWxu λλ ,,,,, denote the generalized nodal displacements and 
H1(x) are the Hermite interpolation polynomials. The element which is used for 
finite element procedures is a C conforming element, which has a total of twelve 
degrees of freedom per node. By eliminating generalized nodal displacement, ix , 
this element can be used for FSDT and by eliminating generalized nodal 
displacement λij and Wsi, the element will have ten degrees of freedom per node, 
which is used for CLT in this study. Substituting Eq. (12) into Eq. (11) and using 
Hamilton variational principle, the element equations of motion are  

{ } { } { }e e e e e

T
M q M q F   + =                                   (13) 
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The variables q and stiffness coefficients Kr (for α,β= 1,…,6) are defined by [13-
14] and are not re-introduced here.  
     The overall mass matrix of the entire system at time t is given by:  

e e e
mLT

M M M     = +                                            (14) 

where eM    is the element mass matrix and e
mLM    is the element mass matrix 

due to the mass of moving loads. 
     For the i-th moving load with a concentrated mass m1, the elementary mass 
matrix can be obtained as:  
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where the bar symbol on H means that the term is evaluated in local coordinate 
of the specific elements where moving loads are located. The external forces due 
to transverse force q and moving load can be obtained by  

{ } [ ] [ ] ( )
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T Te
i i

l l
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The dynamic response of the composite laminated beam under the moving loads 
is investigated by a step-by-step method. At any instant of time t, the position of 
all moving loads are found and by using Eq. (15) and Eq. (16) the effects of 
moving loads are appeared on the elementary moving mass matrix e

mLM   and 

nodal force vector { }eF . It should be noted that all elementary moving mass 

matrices e
mLM   and nodal force vector { }eF are equal to zero except that of the 

element on which the moving loads act. 

4 Numerical results and discussion  

4.1 Free Vibration of Symmetrically AS/3501-.6  

Graphit-Epoxy Laminated Composite Beams for Various angle of layer. 
Numerical results have been presented for four symmetrical layer AS/3501-6 
clamped-clamped graphit-epoxy beams (ө/-ө/-ө/ө). This example demonstrates 
the importance of the bend-twist coupling term and the Poisson-effect of angle-
ply beams. Results obtained using the FSDT (with/without the bend-twist 
coupling and Poisson-effect), are compared to analytical results [23], where in 
their study they used first shear deformation and including the rotary inertia but 
neglecting bend-twist coupling and Poisson-effect. Beam width is taken as unity 
as mentioned in [23] and the material properties used in these examples are:  
ELL=144.8 GPa, ETT=965.3 GPa, GLT=413.7 GPa, GTT=3.48 GPa, mass density 
ρ =1389.227 Kg/m3, Poisson's ratio 0.3LTν = . 
     Table 1 shows the non-dimensional fundamental frequencies 

2
2

LL

L
E h
ρ

ϖ ω=  of four layer symmetrical angle-ply beams for the clamped-
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clamped boundary condition. In this table, the first row shows the results 
reported by [23] and in the second row the results of the present study used the 
FSDT without both the bend-twist coupling and Poisson-effect are shown 
(FSDT). In third row results of FSDT with consideration of the bend-twist 
coupling and neglecting Poisson's-effect are presented (FSDT) and finally, in 
forth row results of FSDT including both bend-twist coupling and Poisson 
effects are shown. 

Table 1:  Non-dimensional fundamental frequencies for the AS/3501-6 
Graphit-Epoxy of (θ /θ -/θ -/θ ) angle-ply Clamped-Clamped 
beams for slender ratio L/h=15. 

Non-dimensional fundamental frequency Solution 
type 0            15           30            45            60            75            90  

Analytical 
FSDT** 
FSDT* 
FSDT 

4.8487 
4.8712 
4.8712 
4.8629 

4.6635 
4.6835 
4.1071 
4.0082 

4.0981 
4.1118 
3.3806 
2.8762 

3.1843 
3.1908 
2.6199 
1.9330 

2.1984 
2.2006 
1.9611 
1.6290 

1.6815 
1.6814 
1.6604 
1.6063 

1.6200 
1.6207 
1.6207 
1.6161 

 
     The frequencies decrease with increase in fiber orientation. Also neglecting 
the bend-twist coupling and Poisson-effect may occurs overproduction of the 
fundamental frequency, specially for angle lay-out between 30° through 60°, for 
example, for the (45/-45/-45/45) clamped-clamped beam the fundamental 
frequency is 64.7% less than that reported in [23]. 

4.2 Forced vibration of isotropic simply supported beam with moving mass  

In this example the algorithm were developed for the case of moving mass are 
studied for problem that has constant velocity. Since the exact solution for 
moving mass problem is not available, the results are compared with 
experimental work reported by [6]. In their investigation a uniform simply 
supported beam has been studied, where the dimensions and mechanical 
properties are as follows: length L=1.524m(60"), width b=0.1016m(4"), 
thickness h=0.476 cm (0.1875"), modulus of Elasticity E=206.8 GPa (30 MPsi), 
mass density µ.=7850.6 kg/rn3, fundamental natural frequency ωf= 9.4π and 
mass ratio is Mml / Mb =0.5. The comparison of numerical method of present 
study and experimental res6lts are available for three different velocity ratios, 

1 1 3, ,
4 2 4f

V
Lω π π π

= . Fig. 2 shows the time history of the dynamic TD of mass 

divided by static central TD of beam 
3

48
mLM gLws

EI
=  for the above three values of 

velocity ratio. As it can be observed, the agreement between the results of 
present numerical solution and those obtained by experimental is very good. In 
Fig. 3 shows the time histories of the TD of the beam divided by static central 
TD for a spectrum of velocity ratios are drown. As it is seen the maximum TD of 
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the beam 11 under the action of moving mass occurs at lower velocity ratio 
(V/Lωf =0.5/π) in comparing of moving force case. Another feature is that by 
increasing the velocity of moving mass the maximum displacement is shift to the 
right of centre of beam. Finally for relatively high velocity ratios the inertia of 
the beam is dominated by the dynamic effects of the mass. Fig. 4 shows a 
comparison of the TD of moving mass for various mass ratios when the velocity 
ratio is equal to one. As it is shown in this figure the motion of the mass would 
be like as a parabolic trajectory. Also by increasing the mass ratio the TD 
significantly decreases. 
 

 

Figure 2: FEM vs. experimental TD of the moving mass 
MmL/Mb=1/2,V/L 1ω =1/4π . 

 

  

Figure 3: Time histories of the TD of 
the simply supported beams 
due to moving mass 
V/L 1ω =2/π . 

Figure 4: Comparison of TD of the 
moving mass due for 
several mass ratio using 
HOST with V/L 1ω =1/π . 
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4.3 Forced vibration of the orthotropic composite laminated beam  

We shall now solve an orthotropic simply supported composite laminated beam 
under the action of M=0.45 Kg moving mass. A symmetrical cross-ply laminated 
with four layer of equally thickness (0°/90°/90°/0°) for comparing the results is 
chosen. Each layer is a unidirectional fibre reinforced material with following 
properties; EL=144.8 GPa, ET=9.65 GPa, GLT=4.l36 GPa, GTT=3.447 GPa, 
µ=1389.297 kg/m3, VLT=0.25, VTT= 0.25 where subscripts L and T are directions 
respectively parallel and perpendicular the fibers and VLT is the Poisson’s ratio 
measuring normal strain in the transverse direction under axial normal stress in 
L-direction. The laminated beam has 10.16 cm length, 0.635 cm width and a 
total thickness of h = 0.745 cm, with moment of inertia 1=218.8 1 mm4 and 
fundamental period Tf=0.3187 ms. Fig. 5 shows the comparison of dynamic 
magnification factor of this Graphite-epoxy beam with that of the steel beam 
without considering the shear effect (CLT). As it can be observed, in spite of the 
fact that the total weight of composite beam is approximately 6.5 times less than 
the total weight of steel beam, the maximum dynamic response of centre of beam 
is approximately the same for both materials. Another important result of this 
investigation is that the critical velocity (Vc) of this Graphite- epoxy composite 
beam is approximately 2.5 times the critical velocity of traditional steel beam. 
Also in Fig.5, the dynamic magnification factor of composite beam is drawn for 
CLT, FSDT and HOST. It can be concluded that the shear deformation effect is 
very important in the strength analysis of composite laminated beams even if the 
slender ratio is not very low (L / h = 13.6). 
 

 

Figure 5: Comparison of Dynamic magnification factor of steel beam and 
Graphite-epoxy composite beam with respect to moving load 
velocity using CLT. 
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