E';ﬁ Transactions on Engineering Sciences vol 43, © 2003 WIT Press, www.witpress.com, ISSN 1743-3533

Developing techniques for modeling spatially
heterogeneous materials

J.W. Leggoe
Chemical Engineering Department
Texas Tech University

Abstract

The macroscale properties of materials evolve under the influence of phenomena
arising across a broad spectrum of length scales, with spatial heterogeneity
strongly influencing processes at all length scales. In order to fully investigate the
effect of spatial heterogeneity on macroscale material behavior, it is necessary to
formulate models that capture the interactions between microscale material
phenomena and the mesoscale linkage processes that govern macroscale
behavior. In order to accomplish this, a Cellular Automata (CA) based approach
has been developed, in which a material volume is divided into an array of
discrete domains, with each domain being randomly assigned an individual value
for a property of interest. This approach has been applied to model deformation in
particulate reinforced metal matrix composites (PR MMCs) and failure in ductile
aluminum alloys. The nature of spatial heterogeneity has been found to strongly
influence flow stresses in PR MMCs, consistent with experimental observations.
The severity of local property disparities has been found to strongly influence the
variability of material response, with the effect being most pronounced at high
plastic strains in ductile aluminum alloys. Future development of techniques for
modeling heterogeneous materials requires the application of rigorous statistical
techniques for the characterization of spatial heterogeneity in material
microstructures. Quadrat and distance based techniques that show potential for
characterizing microstructural heterogeneity are discussed.
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1 Introduction

Macroscale material properties evolve under the influence of phenomena arising
across a broad spectrum of length scales. As an example, ductile metallic alloys
and PR MMCs typically fail via a process of void nucleation, growth, and
coalescence [1,2]. Damage initiates at the microscale in the form of voids, which
nucleate preferentially at discontinuities such as secondary (or reinforcing)
phases, grain boundaries, and processing flaws. As straining proceeds, voids
grow and coalesce to form a population of microcracks. Final failure ensues from
the linkage of microcracks to form a failure path spanning the entire specimen.

At each length scale, spatial heterogeneity strongly influences deformation
and failure. The ease of void nucleation and void size are affected by the nature
of the initiating defects and the spatial distribution of void initiation sites. In
silicon-rich aluminum alloys, stress concentration within clustered silicon
particles promotes void nucleation by particle fracture [3]. In PR MMCs, particle
clusters are favored sites for void nucleation, due to both the increased population
of potential nucleation sites, and the complex strain fields arising between closely
spaced particles [2].

Void coalescence is in turn strongly influenced by void size and spacing. For
spheroidized carbon steels, the average void length at coalescence has been found
to correlate approximately with the spacing of the nucleating cementite particles
[4]. Similarly, in a silicon carbide particle reinforced aluminum matrix PR MMC,
decreasing particle spacing was found to decrease the void content at the onset of
fracture [S]. The extent of void growth prior to coalescence is also likely to be
sensitive to factors such as void size, the local stress state, and the nature of the
material in the ligament separating adjacent voids.

The linkage of microcracks will vary in difficulty according to the
arrangement of microcracked regions. If a convenient linkage path exists, failure
may arise with little additional straining beyond the onset of void coalescence [4].
In silicon-rich aluminum alloys, interdendritic segregation creates a network of
clustered silicon particles, providing an easy path for crack propagation [3]. If,
however, microcracked regions are separated by defect free material, significant
additional straining may be required to rupture the intervening ligament [6].

The nature of spatial heterogeneity may therefore profoundly influence
macroscale material properties. Experimental data indicate that the ductility and
fracture toughness of PR MMCs are significantly reduced under the influence of
particle clustering [7,8]. In contrast, PR MMC yield strength is significantly
increased by reinforcement clustering [7].

Systematic experimental investigation of the effects of spatial heterogeneity is
hindered by the difficulty inherent in controlling heterogeneity during specimen
preparation. Numerical modeling provides an alternative whereby sets of
statistically equivalent model "specimens" can be created and analyzed. One
approach is to use "expanded cell", or "multi-particle” (MP) models, in which a
region of material containing multiple randomly located discontinuities is
considered. 2D MP models have been used to investigate the transverse
properties of unidirectional fiber-reinforced composites [9]. For ductile alloys and
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PR MMCs, the 3D arrangement of discontinuities necessitates the use of 3D
models [10]. 3D-MP models of PR MMCs have been developed to investigate the
influence of reinforcement clustering on the development of flow stresses and
particle fracture during elastic and early plastic straining [11,12].

To date, MP models have considered relatively small domains containing on
the order of 40-50 reinforcement particles. To fully investigate the effects of
spatial heterogeneity on macroscale response a Cellular Automata (CA) approach
has been adapted to model heterogeneous materials. The application of the CA
approach to model deformation in PR MMCs and failure in ductile aluminum
alloys is discussed in section 2.

A critical concern in the development of models of spatially heterogeneous
materials lies in ensuring that the simulated microstructures accurately represent
real material microstructures. Invariably, heterogeneity is introduced in models
through the random dispersion of particles or the random assignment of
properties. Real material microstructures are rarely truly random, definite patterns
developing under the influence of the physical processes occurring during
fabrication. In section 3, statistical approaches to the characterization and
subsequent simulation of microstructures are introduced.

2 Cellular Automata based models of heterogeneous materials

CA were initially developed by Von Neumann [13], motivated by an interest in
biological reproduction. Conventional CA consist of discrete spatial lattices, in
which each element of the lattice can take one of a set of discrete values. After
the assignment of initial values, the lattice evolves over discrete time steps, lattice
values being changed according to the values in surrounding elements in line with
rules or look-up tables. While the CA approach has commonly been applied to
model problems in economics and disease propagation, interactions between
disparate adjacent regions are also critical to the evolution of material behavior.

For a CA based material model, a material volume is divided into discrete
domains, with each domain being assigned an individual value for the variable
property of interest. A 3D CA approach was initially developed to model
deformation in PR MMCs [10]. Conventional unit cell models were used to
generate constitutive models for PR MMCs having varying reinforcement volume
fraction. CA models were then formulated in which domain volume fractions
were randomly assigned in line with either a Gaussian governing distribution or a
distribution representing extreme reinforcement clustering. Figure 1(a) depicts a
model representing extreme reinforcement clustering, in which each domain was
randomly assigned a volume fraction of either 0 or 40%. Figure 1(b) depicts a
model in which domain volume fractions were assigned in line with a Gaussian
distribution having a mean of 0.2 and a standard deviation of 0.1.

The effect of spatial heterogeneity on strain field evolution in a model
representing extreme reinforcement clustering is depicted in figure 2. During
early straining, the strain field, while locally non-uniform, was approximately
homogeneous over the entire model, with no region being particularly distorted.
With continued straining, plastic strain localized within grouped weak domains,
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Figure 1:

Figure 2:
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CA models of PR MMCs having spatially varying reinforcement
volume fraction. (a) Model representing extreme reinforcement
clustering; light elements are unreinforced, dark elements contain
40% reinforcement volume fraction. (b) Model assigned domain
volume fractions in line with a Gaussian distribution having a mean
of 20% and a standard deviation of 10%; element colors darken
progressively as volume fraction increases from 0 to 40%
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Strain field evolution in a CA model representing reinforcement
clustering in a PR MMC (model (a) in figure 1). (a) Equivalent
plastic strain field at an applied strain of 0.0025. (b) Equivalent
plastic strain field at an applied strain of 0.10.
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although, in the absence of a damage mechanism, gross strain localization did not
arise. The severity of local property disparities strongly influenced strain field
evolution: clustered models gave rise to much larger ranges of plastic strain than
did the more uniform Gaussian models. Yield strength was found to increase
significantly as the severity of reinforcement clustering increased, in keeping
with experimental observations.

The availability of a constitutive model representing damage accumulation for
aluminum alloys permitted the application of CA based models to investigate the
mesoscale linkage processes leading to final failure. In this case, spatial
heterogeneity was introduced by varying the initial porosity throughout
cylindrical specimens. Initial investigations focused on determining the effect of
levels of domain and property discretization on CA model predictions [14]. While
the predicted ultimate strength converged for a 2x2x2 domain discretization, a
4x4x4 discretization was necessary to predict behavior at high strains. With the
onset of final necking, it was noted that the stress supported by the specimen
became strongly dependent on the element size. If CA are to be used to model
final failure, care must be taken to ensure that element dimensions and failure
strains reflect the volume of material participating in the real necking process.

Subsequent investigations focused on determining the influence of the nature
of spatial heterogeneity on macroscale material response [15]. Three probability
distributions for initial domain porosity were considered; "Uniform", where there
is an equal probability of selecting each of a set of eleven initial porosity values
between 0 and 0.1; "Extreme", where domains may take initial porosities of either
0 or 0.1; and "Gaussian", where the initial porosity was assigned in line with a
Gaussian governing distribution with a user-defined mean and standard deviation.
For each of the distributions under consideration, a set of 20 models was run.

As the spatial distribution of initial porosity deviated from the homogeneous
ideal, the strain field became increasingly heterogeneous, the effect being most
pronounced at high strains as strain localization developed. Figure 3 compares the
strain fields in models assigned extreme and Gaussian distributions; the more
uniform Gaussian distribution gave rise to a more regular strain field, strain
localizing almost symmetrically about the specimen mid-section. Once again,
increasing the severity of local property disparities increased the range of
observed strains; the peak strain in the clustered specimen was almost double that
in the Gaussian specimen. A unique strain localization path developed in each
model, regardless of the distribution governing initial porosity assignment.

The effect of spatial heterogeneity on the macroscale stress-strain responses is
presented in figure 4. As the initial porosity distribution deviated from the
heterogeneous ideal, the variability of the macroscale response increased, with
variation maximized in models representing severe porosity clustering. Variation
was most pronounced at elevated strains, where the strain localization path
exerted a strong influence on the macroscale response. With increasing strain, the
average stress supported by the models declined significantly as the initial
porosity distribution deviated from the homogeneous ideal, indicating that the
severity of local property disparities plays an important role in the development
of strain localization.
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Figure 3
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Effect of the nature of spatial heterogeneity on strain field
evolution. Contours represent axial strain; colors darken
progressively with increasing strain. (a) Model representing
extreme clustering of initial porosity; peak strain is 0.562. (b)
Model in which initial porosity was assigned in line with a
Gaussian distribution with standard deviation 0.01; peak strain is

0.310 [19].
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Effect of the nature of spatial heterogeneity on material response in
sets of 20 models. (a) Averaged macroscale true stress-true strain
response (b) Standard deviation in macroscale stress-strain

responses [19].
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Figure 5: Particulate reinforced metal matrix composites exhibiting different
degrees of reinforcement clustering; (a) Duralcan F3S.20S,
aluminum 359-20% silicon carbide, in as cast state. (b) Comral-
85™  aluminum 6061-20% Micral™ microspheres, cast and
extruded.
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3 Characterization of spatial heterogeneity in materials

One of the critical challenges in modeling heterogeneous materials lies in creating
simulated microstructures that are equivalent to real microstructures. Models
representing spatially heterogeneous materials have usually been generated under
an assumption of complete spatial randomness (CSR). In CA models, domain
properties have been randomly assigned [10,14-15], while in MP models particle
centers are usually randomly dispersed [9,12]; when clustering has been
simulated in MP models, the cluster centers have been randomly dispersed [11].

In practice, real microstructures evolve under the influence of physical
processes, and are rarely truly random. Consider the PR MMC microstructures
presented in figure 5. The Duralcan material exhibits interdendritic segregation of
the reinforcement; In the Comral-85™ material, extrusion has homogenized the
microstructure, though there is "apparently” some residual clustering.
"Apparently" recognizes a key difficulty in characterizing spatial heterogeneity;
for even random spatial processes there is a significant probability that nearest
neighbor spacing will be near zero [16], giving rise to "apparent” clustering.

In modeling spatial heterogeneity, methods by which intuitive concepts such
as "randomness" and "clustering” can be mathematically characterized and
reproduced are essential. Ideally, those techniques should also identify the length
scale associated with any spatial patterns (such as particle clusters). It must also
be recognized that multiple levels of heterogeneity are present in real materials;
in addition to recognizing the spatial pattern of particular events (such as particle
centers), variation in particle size and/or orientation may also be significant.

An excellent review of statistical techniques for characterizing spatial data is
provided by Cressie [16]. Many problems in microstructural characterization
require characterization of "spatial point processes", with stochastic models being
sought to describe the location of "events" (for example, the location of particle
centers) in a two- or three-dimensional space. "Marked" spatial point processes,
in which measures associated with an event (such as particle diameter) are
themselves variables, are also commonly encountered.

In "quadrat” techniques, a study region is divided into subspaces; for example,
a micrograph may be divided into a regular grid of square quadrats. The number
of events within each quadrat is counted, enabling the compilation of a frequency
distribution for the number of events per quadrat. For a CSR process, the number
of events per quadrat has a Poisson distribution with mean AA;, where A is the
intensity of the distribution, and A, the quadrat area [16].

If a process fails a conventional chi-square test for CSR, a variety of indices
are available to quantify the extent of clustering. Of these indices, the David-
Moore index [17] and the Index of Cluster Frequency [18] appear to offer the
most potential for quantifying cluster dimensions and spacing, a critical
consideration for the formulation of CA style models. The David-Moore index
offers the additional capability of identifying regularity in the event pattern [16].

Quadrat techniques have the disadvantage that the results are sensitive to, and
provide information only on the length scale of, the quadrat dimensions. Distance
methods, in contrast, provide information across a range of length scales. The
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simplest of these, the nearest-neighbor method, simply analyzes the spacing of
events and their nearest neighbors. In addition to providing a test for CSR, the
average nearest neighbor spacing can provide an indication as to the "intensity"
of clustering in the event that clustering is indicated.

Extended nearest neighbor methods, which consider the spacing to the "kth"
nearest neighbor, have the potential to provide a clear indication of both the
existence of clustering and the cluster size. From a given map of events, it is
possible to compute the distance W, to the kth nearest neighbor of each event, and
thence compute the mean value of W,. The ratio R, of this mean to the mean
expected under CSR may then be computed. For CSR, the ratio should be one,
whereas if the ratio is less than one, clustering is indicated [16]. Plotting Ry as a
function of & provides a clear indication as to the extent of individual clusters.

Once a spatial point process has been characterized, a variety of simulation
techniques are available. A typical simulation will randomly generate "parent
events", and then allow each parent to produce a number of offspring in line with
a density function. The offspring events then compose the final (simulated)
spatial point process. Segurado et al [11] adopted such an approach to represent
clusters in PR MMCs, each parent cluster containing a fixed number of particles.
In the more general case, the number of offspring would be allowed to vary
randomly in line with a governing frequency distribution, the parameters of
which could be determined using extended nearest neighbor analysis of the
microstructure. If the pattern exhibits regularity, "inhibition" processes such as
Markov point processes may be used to simulate the structure. Simulating a
marked spatial point process may also be accomplished, if given the
characteristics of the marking property. Care must be taken to identify non-
stationarity in the marking property; local particle alignment, for example, may
strongly influence properties, and should ideally be represented in any model.

4 Conclusions

CA based approaches show potential for modeling the macroscale behavior of
spatially heterogeneous materials, capturing the evolution of behavior under the
influence of processes arising across the full range of significant length scales.
The continuing development of models representing spatial heterogeneity
requires the application of spatial statistical techniques to rigorously characterize
spatial heterogeneity in material microstructures. Both quadrat and distance
methods offer techniques by which it may be definitively determined whether a
material microstructure exhibits CSR or some form of clustering. Extended
nearest-neighbor models exhibit particular potential for characterizing clustering.
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