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Abstract

The industrial production of aluminium is an electrolysis process where two
superposed horizontal liquid layers are subjected to a mainly vertical electric
current supplied by carbon electrodes. The lower layer consists of molten
aluminium and lies on the cathode. The upper layer is the electrolyte and
is covered by the anode. The interface between the two layers is often
perturbed, leading to oscillations, or waves, similar to the waves on the
surface of seas or lakes. The presence of electric currents and the resulting
magnetic field are responsible for electromagnetic (Lorentz) forces within
the fluid, which can amplify these oscillations and have an adverse influence
on the process.

The electrolytic bath vertical to horizontal aspect ratio is such, that it
is advantageous to use the shallow water equations to model the interface
motion. These are the depth-averaged Navier-Stokes equations, commonly
used in the modelling of oceans and rivers. Different orders of approxi-
mations may be adopted in averaging the Navier-Stokes equations so that
nonlinear and dispersion terms may be taken into account. Although these
terms are essential to the prediction of wave dynamics, they are neglected in
most of the literature on interface instabilities in aluminium reduction cells
where only the linear theory is usually considered. The unknown variables
are the two horizontal components of the fluid velocity, the height of the
interface and the electric potential.

In this application, a finite volume resolution of the double-layer shal-
low water equations including the electromagnetic sources has been devel-

oped, for incorporation into a generic three-dimensional computational fluid

dynamics code that also deals with heat transfer within the cell.
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130 Free and Moving Boundary Problems

1 Background in Shallow Water Theory

1.1 Surface Waves

The depth-averaged Navier-Stokes equations are known as the shal-

low water equation. These equations give an approximation for the

dynamics of long waves of length / and small amplitude a at the

surface a shallow layer of fluid of depth h$. They express the con-

servation of mass and momentum and can be written in dimensional

form in terms of the gravity g, the depth-averaged velocity u and

displacement 77 of the surface height h = h,Q + rj. Their dimension-

less form is expressed in terms of the small parameters a = a/h$ and

ft = ti/P;
]=0, (1)

ut + mi • Vu + Vr/ - (3VV • uj = O(c?,a0), (2)
o

the subscript t denoting partial time derivatives. The velocity u is

scaled with ga/CQ, CQ = y/gtiQ being the linear phase velocity, the

time t with //CQ, the horizontal coordinate with Z and the vertical

displacement r? with a. Neglecting the small terms in a and 0 gives
a linear theory of waves which has been used by almost all authors
of interface instabilities in aluminium reduction cells, e.g. Sneyd [1].
The theories of nonlinear waves is reviewed in several books including

Whitham [2] and Mei [3].

1.2 Two- layers Theory

Tomasson & Melville [4] have shown that the waves at the interface

between two layers of fluids of similar densities can be represented

by the same Boussinesq equations. Using the notations chosen by

these authors, the top and bottom layers are respectively numbered

1 and 2 as shown on figure 1. Their densities are pi, p2 and their

depths h\j /i2- After introducing the equivalent single layer depth

/IQ — hi h<2/(h\ + hz) and the square of the linear phase speed

eg = gh^Ap/pQ where Ap = p% - p\ and po = (p\ + m)/2 is a
reference density, and assuming a balance between the volume fluxes

Ui = (h\ — TJ)UI and U2 = (h^ 4- ??)u2 in the two layers, the single
flux U defined as U = U2 = — Ui satisfies the Boussinesq equa-

tions for the displacement rj of the interface between the two fluids.

Indeed, in dimensionless form and in terms of the small parameters
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Free and Moving Boundary Problems 131

Figure 1: The two-layers of fluid in an electrolytic bath and the perturba-

tion rj(x,y) of the interface.

a — a/ho and (3 — h^/ft, scaling hi and h^ with /IQ, the densities p\

and p2 with po? the velocity flux U with /%2<7o&/co, the time t with
//CQ, the coordinates x and y with / and the vertical displacement rj

with a,

rfe + V • U = 0, (3)

(4)

2 Application to an Electrolytic Bath

An aluminium reduction cell is submitted to a strong electric current

density J crossing both layers of fluid from the upper carbon anode

to the lower carbon cathode. A significant magnetic field B mainly

created by the input and output currents provided through "bus bars"

to these two electrodes is also present. Any change in the position of
the interface between the two liquid gives rise to a perturbation j in
the current distribution as the electrical path in the electrolyte of poor

conductivity o\ is either decreased or increased as shown on figure 2.

Let us define A<& as the electric potential drop across the electrolyte.
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132 Free and Moving Boundary Problems

anode
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z cathode
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Figure 2: Perturbation of the electric currents due to the deformation of the

interface between the molten aluminium and the electrolyte. The current

takes the shortest path through the poorly conducting electrolyte.

The vertical current density perpendicular to the interface is then

defined in this fluid as

/ 77 \
( * + 7- ) = JOJL + JJL (5)
\ hiJhi -r) hi

The contribution of the interface perturbation in the normal current

density J_L is therefore

J_L = — T2—77 (6)
"i

while the constant vertical current without deformation of the inter-

face is just JQ^ — <7iA<I>//ii. The conservation law for electric charges

may be written as

V-J = V-j = Vj.-jj. + V||.j|| = 0, (7)

and may be integrated over the depth of the molten aluminium layer

as
/•interface r rinterface/interface r r
V j& = V /j||cb+ /

.athode J J c.athode J J cathode
/interface . .

* + B jsMr - (^ + ̂ v - a,,) + j
Cathode

where (j||) — — a^V ̂ is the depth-averaged current density in the

molten aluminium and can be solved from the Poisson equation

(x,y). (9)
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Free and Moving Boundary Problems 133

Since the electromagnetic force gives some energy and momentum

to the fluid, the modelled interface oscillations can only increase if the

dissipation due to the viscosity of the fluid is not taken into account.

The linear friction law used by Bojarevics [5] is introduced in the

model.

2.1 Scaling

Let us introduce the small parameter 6 = (p% — pi)/(p2 + Pi) =

Ap/(2po) and the aspect ratio 7 — ly/1% of the bath horizontal dimen-

sions so that the x- and ^-coordinates are now scaled with /% and ly re-

spectively. The time is scaled with /%/co, the x- and ^/-components U

and V of the velocity flux thus being scaled with Q:CO/IO and â /jĉ hQ.

Defining the interaction parameter TV — Joj_̂ jJx/(̂ oPo) character-
izing the ratio of electromagnetic to inertial forces and scaling the

friction coefficient k with acQ(!3gĥ aKe)~~̂  t^lt/^, the dimensionless

Boussinesq equations are

= o, (io)

i i «2 hi

xyt) = -N*y-kU+0(o?,a0,a6,06), (11)

( -J- - -U ((UV), + j(VV)y - r)Vt]
\h-2 hiJ

~kV +O(a? , aft, o6, 06), (12)

the subscripts x and y denoting partial spatial derivatives.

3 Numerical method and Simulations

The finite volume method with a fully staggered grid as shown on

figure 3 is used. All terms are computed with second order central
finite differences for both spatial and time derivatives. The mass con-
servation equation (10) and the momentum equation (12) are solved

alternatively. The perturbation 77 of the interface is computed explic-

itly at the time step n from its value at the time step n — l and from
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134 Free and Moving Boundary Problems

o

/+7/2,y+7/2

7 + //2J

Figure 3: Finite volume mesh.

the momentum ([/, V) at the intermediate time step n - 1/2:

,n-l/2
.-u.

n-1/2

A*
, (13)

Then the electric potential can be solved from eq. (9) using a classical
five-point finite difference scheme for the Laplacian of $ and a four-

point averaged value of 77i+i/2,j+i/2• The momentum U is computed

implicitly at the time step n + 1/2:

jjn+l/2 _ rrn-l/2 1
i+l/2j A . I ••• ~r

- /12

+ /12

-1

+7

Arc
+7

(14)

where the ̂ -component (UU)x + (V̂ )y of the advection term is
discretised in conservative form using a control volume centred at

i -f 1/2, j and is averaged over the time steps n — 1/2 and n + 1/2,

while the dispersion terms Uxxt and Vxyt are computed with second

order central finite differences over two and three points for first and
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Free and Moving Boundary Problems 135
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Figure 4: Example of the position r?(x, y) of the interface between the

molten aluminium and the electrolyte after amplification of a small

sine wave by the electromagnetic forces within the fluid.

second order derivatives. The code is run with the parameters of

the aluminium production plant in Slatina, Romania. The bath is

6x2 meters. The electrolyte and aluminium layers are 5 and 25 cm

respectively. The imposed magnetic field is given by a commercial

finite elements software [6]. The maximum value of the vertical com-
ponent of the magnetic field is 10r% T and the electric potential drop

in the electrolyte is 1.5 V.

4 Conclusion

The shallow layer equations discretised in finite volumes are success-

fully applied to model interface perturbations in an aluminium elec-

trolysis cell. This finite volume formulation allows the integration of

this model with standard computational fluid dynamics software for

heat transfer computations, a work which is in progress now.
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136 Free and Moving Boundary Problems
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