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Abstract 

The existing scaling laws for turbulent Rayleigh–Bénard convection of air in a 
differentially heated vertical channel is investigated via the lattice Boltzmann 
method (LBM). Based on the arguments of an inner (near-wall) and outer 
(channel centre) region, the simulation results are found to support a minus one-
third power law for the mean temperature in an overlap region. Using the inner 
and outer temperature profiles, an implicit heat transfer equation is shown. A 
correction term is non-negligible for the present Ra range when compared with 
the explicit equations found in this paper. Finally, it is shown that the results of 
present LBM about the Nusselt number Nu as a function of Rayleigh number are 
in good agreement with the theoretical values. 
Keywords: turbulent, Rayleigh–Bénard convection, scaling, LBM. 

1 Introduction 

The heat transfer in a channel has been widely studied in some thermal 
engineering applications such as solar thermal receivers. One of the prevalent 
industry practices is to control the heat gain or loss of the building by insulating 
the external building envelope. The key to a deeper understanding of the 
mechanisms of heat and momentum in turbulent Rayleigh–Bénard convection 
lies in better access to the dynamic in the scaling of temperature and velocity of 
an inner (near-bottom wall) and outer (channel centre) region [1]. The Reynolds-
averaged Navier–Stokes simulations (RANS) and the large eddy simulations 
(LES) are important to have accurate wall models, especially since these models 
set the boundary conditions for calculations close to the wall [2]. The added 
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computational cost associated with fine grid spacing, a requirement for capturing 
rapid changes in flow physics near the wall are reduced. As such, it is important 
to have accurate wall models that are valid for a large range of flow conditions. 
Rayleigh–Bénard convection, as a typical benchmark problem, has been received 
noticeable attention from the lattice Boltzmann method (LBM) community 
owing to its geometric simplicity and its complex flow features at different 
Rayleigh numbers. Although most of studies just concentrate on the laminar and 
transitional Rayleigh–Bénard convection [3, 4]. 
     Hölling and Herwig and Shiri and George have developed wall functions using 
various scaling analyses (e.g. [5–8]). However, the opinions of these studies have 
largely been found to differ, possibly due to the limited numerical data at the 
time. The existing scaling laws for turbulent Rayleigh–Bénard convection of air 
in a differentially heated vertical channel are studied in this paper. Based on the 
arguments of an inner (near-wall) and outer (channel centre) region, the results of 
simulation are found to support a minus one-third power law for the mean 
temperature in an overlap region. Using the inner and outer temperature profiles, 
an implicit heat transfer equation is shown. In the following, a simple lattice 
Boltzmann thermal model will be briefly described at first. Then the problem 
definition and numerical verification are followed. A f t e r  t h a t ,  t h e  detailed 
discussions of turbulence Rayleigh–Bénard convection scaling are investigated. 
Finally, some concluding remarks are provided. 

2 Numerical method 

The numerical algorithm used is based on the discrete kinetic models. The 
starting point is a standard coupled mesoscopic dynamics described by [4]: 

( , ) ( , ) ( , ) ( , ) /eq
i i i i i if x c t t t f x t f x t f x t F           (1) 

( , ) ( , ) g ( , ) ( , ) /eq
i i i i i Tg x c t t t g x t x t g x t            (2) 

where ( , )if x t , ( , )ig x t  stand for the probability density functions to find at 

( , )x t a particle velocity belongs to a discrete and limited set ic (with 

0,1,2, 18i    in the 3 19D Q LBM adopted here [3]). iF  is the momentum input 

from the buoyant body force,  and T are the relaxation time for flow and 

temperature LB equations. The additional buoyant body force term iF  can be 

formulated by the Boussinesq approximation, i.e. 

3i i iyF w T c      g    (3) 

where g  is the acceleration of gravity,   is the thermal expansion coefficient, 

iyc  is the y-component of ic . eq
if  is a single-particle equilibrium distribution
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function which is derived from a Maxwell–Boltzmann distribution and can be 
approximated to 
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     For a D3Q19 lattice, shown in Figure 1, we have: 
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Figure 1: Lattice velocity directions in D3Q19 lattice structures [3]. 
 

 

Figure 2: Schematic diagram of RB convection in a vertical channel. 

     A Chapman–Enskog expansion leads to the equations (5)–(7) for the density, 
momentum, and temperature equation based on equations (1) and (2). The 
streaming step on the left-hand side reproduces the inertial terms in 
the hydrodynamical equations, whereas dissipation and thermal diffusion are 
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connected to the relaxation (towards equilibrium) properties in the right hand 

side, with  and T related to the relaxation times. 
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3 Numerical simulations and discussions 

A computational domain size is defined by x y zL L L   with the 

resolutions 456 228 228x y zM M M      for 66.0 10 ,Ra    and 

656 328 328x y zM M M      for 74.0 10 .Ra    The side boundaries of the 

channel were assigned periodic boundary conditions for both the flow and 
temperature fields. Meanwhile, the upper and bottom solid boundaries were 
assigned no-slip conditions for the flow field and were assigned non-dimensional 
temperatures of 0upT   and 1.downT   

     Figure 3 presents snapshots of the isosurfaces of the temperature fields. The 
red is hot plumes and the blue is cold plumes. By integrating the Eq. (7), we 
obtain 
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which describes a characteristic heat flux constant
zQ  equivalent to the wall heat 

flux zq flowing from left to right divided by density   and specific heat 
pC . The 

outer temperature scale depends on the channel half-high h, the inner and outer 
temperature scales are: 

1/43

z
i

Q
T

g

 
    

,
1/32

z
o

Q
T

g h

 
   
 

                                     (9) 

     The respective inner and outer length scales are defined as: 
1/4
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     To use the above scaling and the gradient-matching approach, the following 
power-law forms of the temperature wall functions are obtained [7]. 
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Figure 3: Snapshots of instantaneous isotherms with / 2y yM L  at 
74.0 10Ra   . 

     The constants to be: 1 4.2c  and 
2 5c   are obtained in the study by 

Versteegh and Nieuwstadt (1999). 
     In this paper, a new inner temperature wall function with fitted constants is 
used: 

_ 1/3

4.2 5.0h

i i

T T z

T l


 

   
 

                                     (12) 

     Figure 4 shows that temperature data plotted in inner and outer scaling with 
evidence of adherence to power-law behavior with two Rayleigh numbers. It is 
found that the LBM results are in good agreement with the present theoretical 
values. To appraise these wall functions, we qualitatively assess their respective 
fits to the present data of LBM in both inner and outer scales, shown in Figure 
4(a) and (b). 
     The analysis of the mean heat transport is represented by the Nusselt number 
in the following section. Firstly we discuss the relations of the turbulent heat flux 
in their dimensionless form, the Nusselt number 1 / ( / )zNu u T T H   and the 

Rayleigh number is 3( ) / ( )Ra TgH    . It is shown that the Nusselt number 

Nu is as a function of Rayleigh number. A clear scaling can be seen for Nu (Ra) 
for 510Ra   to 810 . The theoretical values in Figure 5 is presented by the 
following equation 0.291Nu ~ Ra . 
     Figure 5 displays that the blue dots are the results of present LBM, the black 
squares represent the simulation results of DNS study by Kaczorowski and 
Wagner [9], and the red line represents the theoretical values [9]. It can be seen 
clearly that the results of present LBM are better agreement with the theoretical 
values than the results of DNS. In addition, it is shown that the results of present 
LBM about the Nusselt number Nu as a function of Rayleigh number are in good 
agreement with the theoretical values. 
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Figure 4: Temperature data plotted in inner and outer scaling with evidence of 
adherence to power-law behavior. 
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Figure 5: The Nusselt number Nu as a function of Rayleigh number. 

4 Conclusion 

We show evidence that provide additional support for a minus one-third power 
law for the mean inner and outer temperature wall function in an overlap region 
from the present LBM dataset for 66.0 10Ra = ´ and 74.0 10Ra   . Using the 
inner and outer temperature profiles, an implicit heat transfer equation is shown. 
In addition, it is shown that the results of present LBM are better agreement with 
the experimental results than the results of DNS about the Nusselt number Nu as 
a function of Rayleigh number. Finally, it is shown that the results of present 
LBM about the Nusselt number Nu as a function of Rayleigh number are in good 
agree with the theoretical vales. 
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